import option::none; import option::some; import util::orb; export vbuf; export empty_mut; export init_fn; export init_fn_mut; export init_elt; export init_elt_mut; export buf; export len; export print_debug_info; export slice; export pop; export push; export foldl; export reversed; export member; export map; export map2; export filter_map; export empty; export position; export position_pred; export reverse; type vbuf = rustrt::vbuf; type operator2[T, U, V] = fn(&T, &U) -> V ; type array[T] = vec[mutable? T]; native "rust" mod rustrt { type vbuf; fn vec_buf[T](v: vec[T], offset: uint) -> vbuf; fn vec_len[T](v: vec[T]) -> uint; /** * Sometimes we modify the vec internal data via vec_buf and need to * update the vec's fill length accordingly. */ fn vec_len_set[T](v: vec[T], n: uint); /** * The T in vec_alloc[T, U] is the type of the vec to allocate. The * U is the type of an element in the vec. So to allocate a vec[U] we * want to invoke this as vec_alloc[vec[U], U]. */ fn vec_alloc[T, U](n_elts: uint) -> vec[U]; fn vec_alloc_mut[T, U](n_elts: uint) -> vec[mutable U]; fn refcount[T](v: vec[T]) -> uint; fn vec_print_debug_info[T](v: vec[T]); fn vec_from_vbuf[T](v: vbuf, n_elts: uint) -> vec[T]; fn unsafe_vec_to_mut[T](v: vec[T]) -> vec[mutable T]; } fn alloc[T](n_elts: uint) -> vec[T] { ret rustrt::vec_alloc[vec[T], T](n_elts); } fn alloc_mut[T](n_elts: uint) -> vec[mutable T] { ret rustrt::vec_alloc_mut[vec[mutable T], T](n_elts); } fn refcount[T](v: array[T]) -> uint { let r = rustrt::refcount[T](v); if r == dbg::const_refcount { ret r; } else { ret r - 1u; } } fn vec_from_vbuf[T](v: vbuf, n_elts: uint) -> vec[T] { ret rustrt::vec_from_vbuf[T](v, n_elts); } // FIXME: Remove me; this is a botch to get around rustboot's bad typechecker. fn empty[T]() -> vec[T] { ret alloc[T](0u); } // FIXME: Remove me; this is a botch to get around rustboot's bad typechecker. fn empty_mut[T]() -> vec[mutable T] { ret alloc_mut[T](0u); } type init_op[T] = fn(uint) -> T ; fn init_fn[@T](op: &init_op[T], n_elts: uint) -> vec[T] { let v: vec[T] = alloc[T](n_elts); let i: uint = 0u; while i < n_elts { v += [op(i)]; i += 1u; } ret v; } fn init_fn_mut[@T](op: &init_op[T], n_elts: uint) -> vec[mutable T] { let v: vec[mutable T] = alloc_mut[T](n_elts); let i: uint = 0u; while i < n_elts { v += [mutable op(i)]; i += 1u; } ret v; } // init_elt: creates and returns a vector of length n_elts, filled with // that many copies of element t. fn init_elt[@T](t: &T, n_elts: uint) -> vec[T] { /** * FIXME (issue #81): should be: * * fn elt_op[T](&T x, uint i) -> T { ret x; } * let init_op[T] inner = bind elt_op[T](t, _); * ret init_fn[T](inner, n_elts); */ let v: vec[T] = alloc[T](n_elts); let i: uint = n_elts; while i > 0u { i -= 1u; v += [t]; } ret v; } fn init_elt_mut[@T](t: &T, n_elts: uint) -> vec[mutable T] { let v: vec[mutable T] = alloc_mut[T](n_elts); let i: uint = n_elts; while i > 0u { i -= 1u; v += [mutable t]; } ret v; } fn buf[T](v: array[T]) -> vbuf { ret rustrt::vec_buf[T](v, 0u); } fn len[T](v: array[T]) -> uint { ret rustrt::vec_len[T](v); } fn len_set[T](v: array[T], n: uint) { rustrt::vec_len_set[T](v, n); } fn buf_off[T](v: array[T], offset: uint) -> vbuf { assert (offset < len[T](v)); ret rustrt::vec_buf[T](v, offset); } fn print_debug_info[T](v: array[T]) { rustrt::vec_print_debug_info[T](v); } // FIXME: typestate precondition (list is non-empty) // Returns the last element of v. fn last[@T](v: array[T]) -> option::t[T] { let l = len[T](v); if l == 0u { ret none[T]; } ret some[T](v.(l - 1u)); } // Returns elements from [start..end) from v. fn slice[@T](v: array[T], start: uint, end: uint) -> vec[T] { assert (start <= end); assert (end <= len[T](v)); let result = alloc[T](end - start); let i: uint = start; while i < end { result += [v.(i)]; i += 1u; } ret result; } // FIXME: Should go away eventually. fn slice_mut[@T](v: array[T], start: uint, end: uint) -> vec[mutable T] { assert (start <= end); assert (end <= len[T](v)); let result = alloc_mut[T](end - start); let i: uint = start; while i < end { result += [mutable v.(i)]; i += 1u; } ret result; } fn shift[@T](v: &mutable array[T]) -> T { let ln = len[T](v); assert (ln > 0u); let e = v.(0); v = slice[T](v, 1u, ln); ret e; } fn pop[@T](v: &mutable array[T]) -> T { let ln = len[T](v); assert (ln > 0u); ln -= 1u; let e = v.(ln); v = slice[T](v, 0u, ln); ret e; } fn top[@T](v: &array[T]) -> T { let ln = len[T](v); assert (ln > 0u); ret v.(ln - 1u); } fn push[@T](v: &mutable array[T], t: &T) { v += [t]; } fn unshift[@T](v: &mutable array[T], t: &T) { let rs = alloc[T](len[T](v) + 1u); rs += [t]; rs += v; v = rs; } fn grow[@T](v: &mutable array[T], n: uint, initval: &T) { let i: uint = n; while i > 0u { i -= 1u; v += [initval]; } } fn grow_set[@T](v: &mutable vec[mutable T], index: uint, initval: &T, val: &T) { let length = vec::len(v); if index >= length { grow(v, index - length + 1u, initval); } v.(index) = val; } fn grow_init_fn[@T](v: &mutable array[T], n: uint, init_fn: fn() -> T ) { let i: uint = n; while i > 0u { i -= 1u; v += [init_fn()]; } } fn grow_init_fn_set[@T](v: &mutable array[T], index: uint, init_fn: fn() -> T, val: &T) { let length = vec::len(v); if index >= length { grow_init_fn(v, index - length + 1u, init_fn); } v.(index) = val; } fn map[@T, @U](f: &fn(&T) -> U , v: &vec[T]) -> vec[U] { let rs: vec[U] = alloc[U](len[T](v)); for ve: T in v { rs += [f(ve)]; } ret rs; } fn filter_map[@T, @U](f: &fn(&T) -> option::t[U] , v: &vec[T]) -> vec[U] { let rs: vec[U] = []; for ve: T in v { alt f(ve) { some(elt) { rs += [elt]; } none. { } } } ret rs; } fn map2[@T, @U, @V](f: &operator2[T, U, V], v0: &vec[T], v1: &vec[U]) -> vec[V] { let v0_len = len[T](v0); if v0_len != len[U](v1) { fail; } let u: vec[V] = alloc[V](v0_len); let i = 0u; while i < v0_len { u += [f({ v0.(i) }, { v1.(i) })]; i += 1u; } ret u; } fn find[@T](f: fn(&T) -> bool , v: &vec[T]) -> option::t[T] { for elt: T in v { if f(elt) { ret some[T](elt); } } ret none[T]; } fn position[@T](x: &T, v: &array[T]) -> option::t[uint] { let i: uint = 0u; while i < len(v) { if x == v.(i) { ret some[uint](i); } i += 1u; } ret none[uint]; } fn position_pred[T](f: fn(&T) -> bool , v: &vec[T]) -> option::t[uint] { let i: uint = 0u; while i < len(v) { if f(v.(i)) { ret some[uint](i); } i += 1u; } ret none[uint]; } fn member[T](x: &T, v: &array[T]) -> bool { for elt: T in v { if x == elt { ret true; } } ret false; } fn count[T](x: &T, v: &array[T]) -> uint { let cnt = 0u; for elt: T in v { if x == elt { cnt += 1u; } } ret cnt; } fn foldl[@T, @U](p: fn(&U, &T) -> U , z: &U, v: &vec[T]) -> U { let sz = len[T](v); if sz == 0u { ret z; } else { let rest = slice[T](v, 1u, sz); ret p(foldl[T, U](p, z, rest), v.(0)); } } fn unzip[@T, @U](v: &vec[{_0: T, _1: U}]) -> {_0: vec[T], _1: vec[U]} { let sz = len(v); if sz == 0u { ret {_0: alloc[T](0u), _1: alloc[U](0u)}; } else { let rest = slice(v, 1u, sz); let tl = unzip[T, U](rest); let a = [v.(0)._0]; let b = [v.(0)._1]; ret {_0: a + tl._0, _1: b + tl._1}; } } // FIXME make the lengths being equal a constraint fn zip[@T, @U](v: &vec[T], u: &vec[U]) -> vec[{_0: T, _1: U}] { let sz = len(v); assert (sz == len(u)); if sz == 0u { ret alloc(0u); } else { let rest = zip(slice(v, 1u, sz), slice(u, 1u, sz)); vec::push(rest, {_0: v.(0), _1: u.(0)}); ret rest; } } fn or(v: &vec[bool]) -> bool { let f = orb; ret vec::foldl[bool, bool](f, false, v); } fn any[T](f: &fn(&T) -> bool , v: &vec[T]) -> bool { for t: T in v { if f(t) { ret true; } } ret false; } fn all[T](f: &fn(&T) -> bool , v: &vec[T]) -> bool { for t: T in v { if !f(t) { ret false; } } ret true; } fn clone[@T](v: &vec[T]) -> vec[T] { ret slice[T](v, 0u, len[T](v)); } fn plus_option[@T](v: &mutable vec[T], o: &option::t[T]) { alt o { none. { } some(x) { v += [x]; } } } fn cat_options[@T](v: &vec[option::t[T]]) -> vec[T] { let rs: vec[T] = []; for o: option::t[T] in v { alt o { none. { } some(t) { rs += [t]; } } } ret rs; } // TODO: Remove in favor of built-in "freeze" operation when it's implemented. fn freeze[@T](v: vec[mutable T]) -> vec[T] { let result: vec[T] = []; for elem: T in v { result += [elem]; } ret result; } // Swaps two elements in a vector fn swap[@T](v: &vec[mutable T], a: uint, b: uint) { let t: T = v.(a); v.(a) = v.(b); v.(b) = t; } // In place vector reversal fn reverse[@T](v: &vec[mutable T]) { let i: uint = 0u; let ln = len[T](v); while i < ln / 2u { swap(v, i, ln - i - 1u); i += 1u; } } // Functional vector reversal. Returns a reversed copy of v. fn reversed[@T](v: vec[T]) -> vec[T] { let rs: vec[T] = []; let i = len[T](v); if i == 0u { ret rs; } else { i -= 1u; } while i != 0u { push[T](rs, v.(i)); i -= 1u; } push[T](rs, v.(0)); ret rs; } /// Truncates the vector to length `new_len`. /// FIXME: This relies on a typechecker bug (covariance vs. invariance). fn truncate[@T](v: &mutable vec[mutable? T], new_len: uint) { v = slice[T](v, 0u, new_len); } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: