// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Translate the completed AST to the LLVM IR. //! //! Some functions here, such as trans_block and trans_expr, return a value -- //! the result of the translation to LLVM -- while others, such as trans_fn, //! trans_impl, and trans_item, are called only for the side effect of adding a //! particular definition to the LLVM IR output we're producing. //! //! Hopefully useful general knowledge about trans: //! //! * There's no way to find out the Ty type of a ValueRef. Doing so //! would be "trying to get the eggs out of an omelette" (credit: //! pcwalton). You can, instead, find out its TypeRef by calling val_ty, //! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int, //! int) and rec(x=int, y=int, z=int) will have the same TypeRef. #![allow(non_camel_case_types)] pub use self::ValueOrigin::*; use super::CrateTranslation; use super::ModuleTranslation; use back::link::mangle_exported_name; use back::{link, abi}; use lint; use llvm::{BasicBlockRef, Linkage, ValueRef, Vector, get_param}; use llvm; use middle::cfg; use middle::cstore::CrateStore; use middle::def_id::DefId; use middle::infer; use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem}; use middle::weak_lang_items; use middle::pat_util::simple_name; use middle::subst::Substs; use middle::ty::{self, Ty, HasTypeFlags}; use rustc::front::map as hir_map; use rustc_mir::mir_map::MirMap; use session::config::{self, NoDebugInfo, FullDebugInfo}; use session::Session; use trans::_match; use trans::adt; use trans::attributes; use trans::build::*; use trans::builder::{Builder, noname}; use trans::callee; use trans::cleanup::{self, CleanupMethods, DropHint}; use trans::closure; use trans::common::{Block, C_bool, C_bytes_in_context, C_i32, C_int, C_uint, C_integral}; use trans::common::{C_null, C_struct_in_context, C_u64, C_u8, C_undef}; use trans::common::{CrateContext, DropFlagHintsMap, Field, FunctionContext}; use trans::common::{Result, NodeIdAndSpan, VariantInfo}; use trans::common::{node_id_type, return_type_is_void}; use trans::common::{type_is_immediate, type_is_zero_size, val_ty}; use trans::common; use trans::consts; use trans::context::SharedCrateContext; use trans::controlflow; use trans::datum; use trans::debuginfo::{self, DebugLoc, ToDebugLoc}; use trans::declare; use trans::expr; use trans::foreign; use trans::glue; use trans::intrinsic; use trans::machine; use trans::machine::{llsize_of, llsize_of_real}; use trans::meth; use trans::mir; use trans::monomorphize; use trans::tvec; use trans::type_::Type; use trans::type_of; use trans::type_of::*; use trans::value::Value; use util::common::indenter; use util::sha2::Sha256; use util::nodemap::{NodeMap, NodeSet}; use arena::TypedArena; use libc::c_uint; use std::ffi::{CStr, CString}; use std::cell::{Cell, RefCell}; use std::collections::{HashMap, HashSet}; use std::str; use std::{i8, i16, i32, i64}; use syntax::abi::{Rust, RustCall, RustIntrinsic, PlatformIntrinsic, Abi}; use syntax::codemap::Span; use syntax::parse::token::InternedString; use syntax::attr::AttrMetaMethods; use syntax::attr; use rustc_front; use rustc_front::intravisit::{self, Visitor}; use rustc_front::hir; use syntax::ast; thread_local! { static TASK_LOCAL_INSN_KEY: RefCell>> = { RefCell::new(None) } } pub fn with_insn_ctxt(blk: F) where F: FnOnce(&[&'static str]) { TASK_LOCAL_INSN_KEY.with(move |slot| { slot.borrow().as_ref().map(move |s| blk(s)); }) } pub fn init_insn_ctxt() { TASK_LOCAL_INSN_KEY.with(|slot| { *slot.borrow_mut() = Some(Vec::new()); }); } pub struct _InsnCtxt { _cannot_construct_outside_of_this_module: (), } impl Drop for _InsnCtxt { fn drop(&mut self) { TASK_LOCAL_INSN_KEY.with(|slot| { match slot.borrow_mut().as_mut() { Some(ctx) => { ctx.pop(); } None => {} } }) } } pub fn push_ctxt(s: &'static str) -> _InsnCtxt { debug!("new InsnCtxt: {}", s); TASK_LOCAL_INSN_KEY.with(|slot| { match slot.borrow_mut().as_mut() { Some(ctx) => ctx.push(s), None => {} } }); _InsnCtxt { _cannot_construct_outside_of_this_module: (), } } pub struct StatRecorder<'a, 'tcx: 'a> { ccx: &'a CrateContext<'a, 'tcx>, name: Option, istart: usize, } impl<'a, 'tcx> StatRecorder<'a, 'tcx> { pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> { let istart = ccx.stats().n_llvm_insns.get(); StatRecorder { ccx: ccx, name: Some(name), istart: istart, } } } impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> { fn drop(&mut self) { if self.ccx.sess().trans_stats() { let iend = self.ccx.stats().n_llvm_insns.get(); self.ccx .stats() .fn_stats .borrow_mut() .push((self.name.take().unwrap(), iend - self.istart)); self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1); // Reset LLVM insn count to avoid compound costs. self.ccx.stats().n_llvm_insns.set(self.istart); } } } fn get_extern_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_ty: Ty<'tcx>, name: &str, did: DefId) -> ValueRef { match ccx.externs().borrow().get(name) { Some(n) => return *n, None => (), } let f = declare::declare_rust_fn(ccx, name, fn_ty); let attrs = ccx.sess().cstore.item_attrs(did); attributes::from_fn_attrs(ccx, &attrs[..], f); ccx.externs().borrow_mut().insert(name.to_string(), f); f } pub fn self_type_for_closure<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, closure_id: DefId, fn_ty: Ty<'tcx>) -> Ty<'tcx> { let closure_kind = ccx.tcx().closure_kind(closure_id); match closure_kind { ty::FnClosureKind => { ccx.tcx().mk_imm_ref(ccx.tcx().mk_region(ty::ReStatic), fn_ty) } ty::FnMutClosureKind => { ccx.tcx().mk_mut_ref(ccx.tcx().mk_region(ty::ReStatic), fn_ty) } ty::FnOnceClosureKind => fn_ty, } } pub fn kind_for_closure(ccx: &CrateContext, closure_id: DefId) -> ty::ClosureKind { *ccx.tcx().tables.borrow().closure_kinds.get(&closure_id).unwrap() } pub fn get_extern_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, did: DefId, t: Ty<'tcx>) -> ValueRef { let name = ccx.sess().cstore.item_symbol(did); let ty = type_of(ccx, t); match ccx.externs().borrow_mut().get(&name) { Some(n) => return *n, None => (), } // FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow? // FIXME(nagisa): investigate whether it can be changed into define_global let c = declare::declare_global(ccx, &name[..], ty); // Thread-local statics in some other crate need to *always* be linked // against in a thread-local fashion, so we need to be sure to apply the // thread-local attribute locally if it was present remotely. If we // don't do this then linker errors can be generated where the linker // complains that one object files has a thread local version of the // symbol and another one doesn't. for attr in ccx.tcx().get_attrs(did).iter() { if attr.check_name("thread_local") { llvm::set_thread_local(c, true); } } if ccx.use_dll_storage_attrs() { llvm::SetDLLStorageClass(c, llvm::DLLImportStorageClass); } ccx.externs().borrow_mut().insert(name.to_string(), c); return c; } fn require_alloc_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, info_ty: Ty<'tcx>, it: LangItem) -> DefId { match bcx.tcx().lang_items.require(it) { Ok(id) => id, Err(s) => { bcx.sess().fatal(&format!("allocation of `{}` {}", info_ty, s)); } } } // The following malloc_raw_dyn* functions allocate a box to contain // a given type, but with a potentially dynamic size. pub fn malloc_raw_dyn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, llty_ptr: Type, info_ty: Ty<'tcx>, size: ValueRef, align: ValueRef, debug_loc: DebugLoc) -> Result<'blk, 'tcx> { let _icx = push_ctxt("malloc_raw_exchange"); // Allocate space: let r = callee::trans_lang_call(bcx, require_alloc_fn(bcx, info_ty, ExchangeMallocFnLangItem), &[size, align], None, debug_loc); Result::new(r.bcx, PointerCast(r.bcx, r.val, llty_ptr)) } pub fn bin_op_to_icmp_predicate(ccx: &CrateContext, op: hir::BinOp_, signed: bool) -> llvm::IntPredicate { match op { hir::BiEq => llvm::IntEQ, hir::BiNe => llvm::IntNE, hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT }, hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE }, hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT }, hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE }, op => { ccx.sess() .bug(&format!("comparison_op_to_icmp_predicate: expected comparison operator, \ found {:?}", op)); } } } pub fn bin_op_to_fcmp_predicate(ccx: &CrateContext, op: hir::BinOp_) -> llvm::RealPredicate { match op { hir::BiEq => llvm::RealOEQ, hir::BiNe => llvm::RealUNE, hir::BiLt => llvm::RealOLT, hir::BiLe => llvm::RealOLE, hir::BiGt => llvm::RealOGT, hir::BiGe => llvm::RealOGE, op => { ccx.sess() .bug(&format!("comparison_op_to_fcmp_predicate: expected comparison operator, \ found {:?}", op)); } } } pub fn compare_fat_ptrs<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, lhs_addr: ValueRef, lhs_extra: ValueRef, rhs_addr: ValueRef, rhs_extra: ValueRef, _t: Ty<'tcx>, op: hir::BinOp_, debug_loc: DebugLoc) -> ValueRef { match op { hir::BiEq => { let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc); let extra_eq = ICmp(bcx, llvm::IntEQ, lhs_extra, rhs_extra, debug_loc); And(bcx, addr_eq, extra_eq, debug_loc) } hir::BiNe => { let addr_eq = ICmp(bcx, llvm::IntNE, lhs_addr, rhs_addr, debug_loc); let extra_eq = ICmp(bcx, llvm::IntNE, lhs_extra, rhs_extra, debug_loc); Or(bcx, addr_eq, extra_eq, debug_loc) } hir::BiLe | hir::BiLt | hir::BiGe | hir::BiGt => { // a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1) let (op, strict_op) = match op { hir::BiLt => (llvm::IntULT, llvm::IntULT), hir::BiLe => (llvm::IntULE, llvm::IntULT), hir::BiGt => (llvm::IntUGT, llvm::IntUGT), hir::BiGe => (llvm::IntUGE, llvm::IntUGT), _ => unreachable!(), }; let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc); let extra_op = ICmp(bcx, op, lhs_extra, rhs_extra, debug_loc); let addr_eq_extra_op = And(bcx, addr_eq, extra_op, debug_loc); let addr_strict = ICmp(bcx, strict_op, lhs_addr, rhs_addr, debug_loc); Or(bcx, addr_strict, addr_eq_extra_op, debug_loc) } _ => { bcx.tcx().sess.bug("unexpected fat ptr binop"); } } } pub fn compare_scalar_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, lhs: ValueRef, rhs: ValueRef, t: Ty<'tcx>, op: hir::BinOp_, debug_loc: DebugLoc) -> ValueRef { match t.sty { ty::TyTuple(ref tys) if tys.is_empty() => { // We don't need to do actual comparisons for nil. // () == () holds but () < () does not. match op { hir::BiEq | hir::BiLe | hir::BiGe => return C_bool(bcx.ccx(), true), hir::BiNe | hir::BiLt | hir::BiGt => return C_bool(bcx.ccx(), false), // refinements would be nice _ => bcx.sess().bug("compare_scalar_types: must be a comparison operator"), } } ty::TyBareFn(..) | ty::TyBool | ty::TyUint(_) | ty::TyChar => { ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, false), lhs, rhs, debug_loc) } ty::TyRawPtr(mt) if common::type_is_sized(bcx.tcx(), mt.ty) => { ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, false), lhs, rhs, debug_loc) } ty::TyRawPtr(_) => { let lhs_addr = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_ADDR])); let lhs_extra = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_EXTRA])); let rhs_addr = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_ADDR])); let rhs_extra = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_EXTRA])); compare_fat_ptrs(bcx, lhs_addr, lhs_extra, rhs_addr, rhs_extra, t, op, debug_loc) } ty::TyInt(_) => { ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, true), lhs, rhs, debug_loc) } ty::TyFloat(_) => { FCmp(bcx, bin_op_to_fcmp_predicate(bcx.ccx(), op), lhs, rhs, debug_loc) } // Should never get here, because t is scalar. _ => bcx.sess().bug("non-scalar type passed to compare_scalar_types"), } } pub fn compare_simd_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, lhs: ValueRef, rhs: ValueRef, t: Ty<'tcx>, ret_ty: Type, op: hir::BinOp_, debug_loc: DebugLoc) -> ValueRef { let signed = match t.sty { ty::TyFloat(_) => { let cmp = bin_op_to_fcmp_predicate(bcx.ccx(), op); return SExt(bcx, FCmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty); }, ty::TyUint(_) => false, ty::TyInt(_) => true, _ => bcx.sess().bug("compare_simd_types: invalid SIMD type"), }; let cmp = bin_op_to_icmp_predicate(bcx.ccx(), op, signed); // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension // to get the correctly sized type. This will compile to a single instruction // once the IR is converted to assembly if the SIMD instruction is supported // by the target architecture. SExt(bcx, ICmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty) } // Iterates through the elements of a structural type. pub fn iter_structural_ty<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>, av: ValueRef, t: Ty<'tcx>, mut f: F) -> Block<'blk, 'tcx> where F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx> { let _icx = push_ctxt("iter_structural_ty"); fn iter_variant<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>, repr: &adt::Repr<'tcx>, av: adt::MaybeSizedValue, variant: ty::VariantDef<'tcx>, substs: &Substs<'tcx>, f: &mut F) -> Block<'blk, 'tcx> where F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx> { let _icx = push_ctxt("iter_variant"); let tcx = cx.tcx(); let mut cx = cx; for (i, field) in variant.fields.iter().enumerate() { let arg = monomorphize::field_ty(tcx, substs, field); cx = f(cx, adt::trans_field_ptr(cx, repr, av, variant.disr_val, i), arg); } return cx; } let value = if common::type_is_sized(cx.tcx(), t) { adt::MaybeSizedValue::sized(av) } else { let data = Load(cx, expr::get_dataptr(cx, av)); let info = Load(cx, expr::get_meta(cx, av)); adt::MaybeSizedValue::unsized_(data, info) }; let mut cx = cx; match t.sty { ty::TyStruct(..) => { let repr = adt::represent_type(cx.ccx(), t); let VariantInfo { fields, discr } = VariantInfo::from_ty(cx.tcx(), t, None); for (i, &Field(_, field_ty)) in fields.iter().enumerate() { let llfld_a = adt::trans_field_ptr(cx, &*repr, value, discr, i); let val = if common::type_is_sized(cx.tcx(), field_ty) { llfld_a } else { let scratch = datum::rvalue_scratch_datum(cx, field_ty, "__fat_ptr_iter"); Store(cx, llfld_a, expr::get_dataptr(cx, scratch.val)); Store(cx, value.meta, expr::get_meta(cx, scratch.val)); scratch.val }; cx = f(cx, val, field_ty); } } ty::TyClosure(_, ref substs) => { let repr = adt::represent_type(cx.ccx(), t); for (i, upvar_ty) in substs.upvar_tys.iter().enumerate() { let llupvar = adt::trans_field_ptr(cx, &*repr, value, 0, i); cx = f(cx, llupvar, upvar_ty); } } ty::TyArray(_, n) => { let (base, len) = tvec::get_fixed_base_and_len(cx, value.value, n); let unit_ty = t.sequence_element_type(cx.tcx()); cx = tvec::iter_vec_raw(cx, base, unit_ty, len, f); } ty::TySlice(_) | ty::TyStr => { let unit_ty = t.sequence_element_type(cx.tcx()); cx = tvec::iter_vec_raw(cx, value.value, unit_ty, value.meta, f); } ty::TyTuple(ref args) => { let repr = adt::represent_type(cx.ccx(), t); for (i, arg) in args.iter().enumerate() { let llfld_a = adt::trans_field_ptr(cx, &*repr, value, 0, i); cx = f(cx, llfld_a, *arg); } } ty::TyEnum(en, substs) => { let fcx = cx.fcx; let ccx = fcx.ccx; let repr = adt::represent_type(ccx, t); let n_variants = en.variants.len(); // NB: we must hit the discriminant first so that structural // comparison know not to proceed when the discriminants differ. match adt::trans_switch(cx, &*repr, av) { (_match::Single, None) => { if n_variants != 0 { assert!(n_variants == 1); cx = iter_variant(cx, &*repr, adt::MaybeSizedValue::sized(av), &en.variants[0], substs, &mut f); } } (_match::Switch, Some(lldiscrim_a)) => { cx = f(cx, lldiscrim_a, cx.tcx().types.isize); // Create a fall-through basic block for the "else" case of // the switch instruction we're about to generate. Note that // we do **not** use an Unreachable instruction here, even // though most of the time this basic block will never be hit. // // When an enum is dropped it's contents are currently // overwritten to DTOR_DONE, which means the discriminant // could have changed value to something not within the actual // range of the discriminant. Currently this function is only // used for drop glue so in this case we just return quickly // from the outer function, and any other use case will only // call this for an already-valid enum in which case the `ret // void` will never be hit. let ret_void_cx = fcx.new_temp_block("enum-iter-ret-void"); RetVoid(ret_void_cx, DebugLoc::None); let llswitch = Switch(cx, lldiscrim_a, ret_void_cx.llbb, n_variants); let next_cx = fcx.new_temp_block("enum-iter-next"); for variant in &en.variants { let variant_cx = fcx.new_temp_block(&format!("enum-iter-variant-{}", &variant.disr_val .to_string())); let case_val = adt::trans_case(cx, &*repr, variant.disr_val); AddCase(llswitch, case_val, variant_cx.llbb); let variant_cx = iter_variant(variant_cx, &*repr, value, variant, substs, &mut f); Br(variant_cx, next_cx.llbb, DebugLoc::None); } cx = next_cx; } _ => ccx.sess().unimpl("value from adt::trans_switch in iter_structural_ty"), } } _ => { cx.sess().unimpl(&format!("type in iter_structural_ty: {}", t)) } } return cx; } /// Retrieve the information we are losing (making dynamic) in an unsizing /// adjustment. /// /// The `old_info` argument is a bit funny. It is intended for use /// in an upcast, where the new vtable for an object will be drived /// from the old one. pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>, source: Ty<'tcx>, target: Ty<'tcx>, old_info: Option, param_substs: &'tcx Substs<'tcx>) -> ValueRef { let (source, target) = ccx.tcx().struct_lockstep_tails(source, target); match (&source.sty, &target.sty) { (&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len), (&ty::TyTrait(_), &ty::TyTrait(_)) => { // For now, upcasts are limited to changes in marker // traits, and hence never actually require an actual // change to the vtable. old_info.expect("unsized_info: missing old info for trait upcast") } (_, &ty::TyTrait(box ty::TraitTy { ref principal, .. })) => { // Note that we preserve binding levels here: let substs = principal.0.substs.with_self_ty(source).erase_regions(); let substs = ccx.tcx().mk_substs(substs); let trait_ref = ty::Binder(ty::TraitRef { def_id: principal.def_id(), substs: substs, }); consts::ptrcast(meth::get_vtable(ccx, trait_ref, param_substs), Type::vtable_ptr(ccx)) } _ => ccx.sess().bug(&format!("unsized_info: invalid unsizing {:?} -> {:?}", source, target)), } } /// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer. pub fn unsize_thin_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, src: ValueRef, src_ty: Ty<'tcx>, dst_ty: Ty<'tcx>) -> (ValueRef, ValueRef) { debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty); match (&src_ty.sty, &dst_ty.sty) { (&ty::TyBox(a), &ty::TyBox(b)) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) | (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => { assert!(common::type_is_sized(bcx.tcx(), a)); let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), b).ptr_to(); (PointerCast(bcx, src, ptr_ty), unsized_info(bcx.ccx(), a, b, None, bcx.fcx.param_substs)) } _ => bcx.sess().bug("unsize_thin_ptr: called on bad types"), } } /// Coerce `src`, which is a reference to a value of type `src_ty`, /// to a value of type `dst_ty` and store the result in `dst` pub fn coerce_unsized_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, src: ValueRef, src_ty: Ty<'tcx>, dst: ValueRef, dst_ty: Ty<'tcx>) { match (&src_ty.sty, &dst_ty.sty) { (&ty::TyBox(..), &ty::TyBox(..)) | (&ty::TyRef(..), &ty::TyRef(..)) | (&ty::TyRef(..), &ty::TyRawPtr(..)) | (&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => { let (base, info) = if common::type_is_fat_ptr(bcx.tcx(), src_ty) { // fat-ptr to fat-ptr unsize preserves the vtable load_fat_ptr(bcx, src, src_ty) } else { let base = load_ty(bcx, src, src_ty); unsize_thin_ptr(bcx, base, src_ty, dst_ty) }; store_fat_ptr(bcx, base, info, dst, dst_ty); } // This can be extended to enums and tuples in the future. // (&ty::TyEnum(def_id_a, _), &ty::TyEnum(def_id_b, _)) | (&ty::TyStruct(def_a, _), &ty::TyStruct(def_b, _)) => { assert_eq!(def_a, def_b); let src_repr = adt::represent_type(bcx.ccx(), src_ty); let src_fields = match &*src_repr { &adt::Repr::Univariant(ref s, _) => &s.fields, _ => bcx.sess().bug("struct has non-univariant repr"), }; let dst_repr = adt::represent_type(bcx.ccx(), dst_ty); let dst_fields = match &*dst_repr { &adt::Repr::Univariant(ref s, _) => &s.fields, _ => bcx.sess().bug("struct has non-univariant repr"), }; let src = adt::MaybeSizedValue::sized(src); let dst = adt::MaybeSizedValue::sized(dst); let iter = src_fields.iter().zip(dst_fields).enumerate(); for (i, (src_fty, dst_fty)) in iter { if type_is_zero_size(bcx.ccx(), dst_fty) { continue; } let src_f = adt::trans_field_ptr(bcx, &src_repr, src, 0, i); let dst_f = adt::trans_field_ptr(bcx, &dst_repr, dst, 0, i); if src_fty == dst_fty { memcpy_ty(bcx, dst_f, src_f, src_fty); } else { coerce_unsized_into(bcx, src_f, src_fty, dst_f, dst_fty); } } } _ => bcx.sess().bug(&format!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty)), } } pub fn cast_shift_expr_rhs(cx: Block, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef { cast_shift_rhs(op, lhs, rhs, |a, b| Trunc(cx, a, b), |a, b| ZExt(cx, a, b)) } pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef { cast_shift_rhs(op, lhs, rhs, |a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) }, |a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) }) } fn cast_shift_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef, trunc: F, zext: G) -> ValueRef where F: FnOnce(ValueRef, Type) -> ValueRef, G: FnOnce(ValueRef, Type) -> ValueRef { // Shifts may have any size int on the rhs if rustc_front::util::is_shift_binop(op) { let mut rhs_llty = val_ty(rhs); let mut lhs_llty = val_ty(lhs); if rhs_llty.kind() == Vector { rhs_llty = rhs_llty.element_type() } if lhs_llty.kind() == Vector { lhs_llty = lhs_llty.element_type() } let rhs_sz = rhs_llty.int_width(); let lhs_sz = lhs_llty.int_width(); if lhs_sz < rhs_sz { trunc(rhs, lhs_llty) } else if lhs_sz > rhs_sz { // FIXME (#1877: If shifting by negative // values becomes not undefined then this is wrong. zext(rhs, lhs_llty) } else { rhs } } else { rhs } } pub fn llty_and_min_for_signed_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, val_t: Ty<'tcx>) -> (Type, u64) { match val_t.sty { ty::TyInt(t) => { let llty = Type::int_from_ty(cx.ccx(), t); let min = match t { ast::TyIs if llty == Type::i32(cx.ccx()) => i32::MIN as u64, ast::TyIs => i64::MIN as u64, ast::TyI8 => i8::MIN as u64, ast::TyI16 => i16::MIN as u64, ast::TyI32 => i32::MIN as u64, ast::TyI64 => i64::MIN as u64, }; (llty, min) } _ => unreachable!(), } } pub fn fail_if_zero_or_overflows<'blk, 'tcx>(cx: Block<'blk, 'tcx>, call_info: NodeIdAndSpan, divrem: hir::BinOp, lhs: ValueRef, rhs: ValueRef, rhs_t: Ty<'tcx>) -> Block<'blk, 'tcx> { let (zero_text, overflow_text) = if divrem.node == hir::BiDiv { ("attempted to divide by zero", "attempted to divide with overflow") } else { ("attempted remainder with a divisor of zero", "attempted remainder with overflow") }; let debug_loc = call_info.debug_loc(); let (is_zero, is_signed) = match rhs_t.sty { ty::TyInt(t) => { let zero = C_integral(Type::int_from_ty(cx.ccx(), t), 0, false); (ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), true) } ty::TyUint(t) => { let zero = C_integral(Type::uint_from_ty(cx.ccx(), t), 0, false); (ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), false) } ty::TyStruct(def, _) if def.is_simd() => { let mut res = C_bool(cx.ccx(), false); for i in 0..rhs_t.simd_size(cx.tcx()) { res = Or(cx, res, IsNull(cx, ExtractElement(cx, rhs, C_int(cx.ccx(), i as i64))), debug_loc); } (res, false) } _ => { cx.sess().bug(&format!("fail-if-zero on unexpected type: {}", rhs_t)); } }; let bcx = with_cond(cx, is_zero, |bcx| { controlflow::trans_fail(bcx, call_info, InternedString::new(zero_text)) }); // To quote LLVM's documentation for the sdiv instruction: // // Division by zero leads to undefined behavior. Overflow also leads // to undefined behavior; this is a rare case, but can occur, for // example, by doing a 32-bit division of -2147483648 by -1. // // In order to avoid undefined behavior, we perform runtime checks for // signed division/remainder which would trigger overflow. For unsigned // integers, no action beyond checking for zero need be taken. if is_signed { let (llty, min) = llty_and_min_for_signed_ty(cx, rhs_t); let minus_one = ICmp(bcx, llvm::IntEQ, rhs, C_integral(llty, !0, false), debug_loc); with_cond(bcx, minus_one, |bcx| { let is_min = ICmp(bcx, llvm::IntEQ, lhs, C_integral(llty, min, true), debug_loc); with_cond(bcx, is_min, |bcx| { controlflow::trans_fail(bcx, call_info, InternedString::new(overflow_text)) }) }) } else { bcx } } pub fn trans_external_path<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, did: DefId, t: Ty<'tcx>) -> ValueRef { let name = ccx.sess().cstore.item_symbol(did); match t.sty { ty::TyBareFn(_, ref fn_ty) => { match ccx.sess().target.target.adjust_abi(fn_ty.abi) { Rust | RustCall => { get_extern_rust_fn(ccx, t, &name[..], did) } RustIntrinsic | PlatformIntrinsic => { ccx.sess().bug("unexpected intrinsic in trans_external_path") } _ => { let attrs = ccx.sess().cstore.item_attrs(did); foreign::register_foreign_item_fn(ccx, fn_ty.abi, t, &name, &attrs) } } } _ => { get_extern_const(ccx, did, t) } } } pub fn invoke<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, llfn: ValueRef, llargs: &[ValueRef], fn_ty: Ty<'tcx>, debug_loc: DebugLoc) -> (ValueRef, Block<'blk, 'tcx>) { let _icx = push_ctxt("invoke_"); if bcx.unreachable.get() { return (C_null(Type::i8(bcx.ccx())), bcx); } let attributes = attributes::from_fn_type(bcx.ccx(), fn_ty); match bcx.opt_node_id { None => { debug!("invoke at ???"); } Some(id) => { debug!("invoke at {}", bcx.tcx().map.node_to_string(id)); } } if need_invoke(bcx) { debug!("invoking {} at {:?}", bcx.val_to_string(llfn), bcx.llbb); for &llarg in llargs { debug!("arg: {}", bcx.val_to_string(llarg)); } let normal_bcx = bcx.fcx.new_temp_block("normal-return"); let landing_pad = bcx.fcx.get_landing_pad(); let llresult = Invoke(bcx, llfn, &llargs[..], normal_bcx.llbb, landing_pad, Some(attributes), debug_loc); return (llresult, normal_bcx); } else { debug!("calling {} at {:?}", bcx.val_to_string(llfn), bcx.llbb); for &llarg in llargs { debug!("arg: {}", bcx.val_to_string(llarg)); } let llresult = Call(bcx, llfn, &llargs[..], Some(attributes), debug_loc); return (llresult, bcx); } } /// Returns whether this session's target will use SEH-based unwinding. /// /// This is only true for MSVC targets, and even then the 64-bit MSVC target /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as /// 64-bit MinGW) instead of "full SEH". pub fn wants_msvc_seh(sess: &Session) -> bool { sess.target.target.options.is_like_msvc && sess.target.target.arch == "x86" } pub fn need_invoke(bcx: Block) -> bool { // FIXME(#25869) currently SEH-based unwinding is pretty buggy in LLVM and // is being overhauled as this is being written. Until that // time such that upstream LLVM's implementation is more solid // and we start binding it we need to skip invokes for any // target which wants SEH-based unwinding. if bcx.sess().no_landing_pads() || wants_msvc_seh(bcx.sess()) { return false; } // Avoid using invoke if we are already inside a landing pad. if bcx.is_lpad { return false; } bcx.fcx.needs_invoke() } pub fn load_if_immediate<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, t: Ty<'tcx>) -> ValueRef { let _icx = push_ctxt("load_if_immediate"); if type_is_immediate(cx.ccx(), t) { return load_ty(cx, v, t); } return v; } /// Helper for loading values from memory. Does the necessary conversion if the in-memory type /// differs from the type used for SSA values. Also handles various special cases where the type /// gives us better information about what we are loading. pub fn load_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef { if cx.unreachable.get() || type_is_zero_size(cx.ccx(), t) { return C_undef(type_of::type_of(cx.ccx(), t)); } let ptr = to_arg_ty_ptr(cx, ptr, t); let align = type_of::align_of(cx.ccx(), t); if type_is_immediate(cx.ccx(), t) && type_of::type_of(cx.ccx(), t).is_aggregate() { let load = Load(cx, ptr); unsafe { llvm::LLVMSetAlignment(load, align); } return load; } unsafe { let global = llvm::LLVMIsAGlobalVariable(ptr); if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True { let val = llvm::LLVMGetInitializer(global); if !val.is_null() { return to_arg_ty(cx, val, t); } } } let val = if t.is_bool() { LoadRangeAssert(cx, ptr, 0, 2, llvm::False) } else if t.is_char() { // a char is a Unicode codepoint, and so takes values from 0 // to 0x10FFFF inclusive only. LoadRangeAssert(cx, ptr, 0, 0x10FFFF + 1, llvm::False) } else if (t.is_region_ptr() || t.is_unique()) && !common::type_is_fat_ptr(cx.tcx(), t) { LoadNonNull(cx, ptr) } else { Load(cx, ptr) }; unsafe { llvm::LLVMSetAlignment(val, align); } to_arg_ty(cx, val, t) } /// Helper for storing values in memory. Does the necessary conversion if the in-memory type /// differs from the type used for SSA values. pub fn store_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) { if cx.unreachable.get() { return; } debug!("store_ty: {} : {:?} <- {}", cx.val_to_string(dst), t, cx.val_to_string(v)); if common::type_is_fat_ptr(cx.tcx(), t) { Store(cx, ExtractValue(cx, v, abi::FAT_PTR_ADDR), expr::get_dataptr(cx, dst)); Store(cx, ExtractValue(cx, v, abi::FAT_PTR_EXTRA), expr::get_meta(cx, dst)); } else { let store = Store(cx, from_arg_ty(cx, v, t), to_arg_ty_ptr(cx, dst, t)); unsafe { llvm::LLVMSetAlignment(store, type_of::align_of(cx.ccx(), t)); } } } pub fn store_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>, data: ValueRef, extra: ValueRef, dst: ValueRef, _ty: Ty<'tcx>) { // FIXME: emit metadata Store(cx, data, expr::get_dataptr(cx, dst)); Store(cx, extra, expr::get_meta(cx, dst)); } pub fn load_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>, src: ValueRef, _ty: Ty<'tcx>) -> (ValueRef, ValueRef) { // FIXME: emit metadata (Load(cx, expr::get_dataptr(cx, src)), Load(cx, expr::get_meta(cx, src))) } pub fn from_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef { if ty.is_bool() { ZExt(bcx, val, Type::i8(bcx.ccx())) } else { val } } pub fn to_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef { if ty.is_bool() { Trunc(bcx, val, Type::i1(bcx.ccx())) } else { val } } pub fn to_arg_ty_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ptr: ValueRef, ty: Ty<'tcx>) -> ValueRef { if type_is_immediate(bcx.ccx(), ty) && type_of::type_of(bcx.ccx(), ty).is_aggregate() { // We want to pass small aggregates as immediate values, but using an aggregate LLVM type // for this leads to bad optimizations, so its arg type is an appropriately sized integer // and we have to convert it BitCast(bcx, ptr, type_of::arg_type_of(bcx.ccx(), ty).ptr_to()) } else { ptr } } pub fn init_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, local: &hir::Local) -> Block<'blk, 'tcx> { debug!("init_local(bcx={}, local.id={})", bcx.to_str(), local.id); let _indenter = indenter(); let _icx = push_ctxt("init_local"); _match::store_local(bcx, local) } pub fn raw_block<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>, is_lpad: bool, llbb: BasicBlockRef) -> Block<'blk, 'tcx> { common::BlockS::new(llbb, is_lpad, None, fcx) } pub fn with_cond<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>, val: ValueRef, f: F) -> Block<'blk, 'tcx> where F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx> { let _icx = push_ctxt("with_cond"); if bcx.unreachable.get() || common::const_to_opt_uint(val) == Some(0) { return bcx; } let fcx = bcx.fcx; let next_cx = fcx.new_temp_block("next"); let cond_cx = fcx.new_temp_block("cond"); CondBr(bcx, val, cond_cx.llbb, next_cx.llbb, DebugLoc::None); let after_cx = f(cond_cx); if !after_cx.terminated.get() { Br(after_cx, next_cx.llbb, DebugLoc::None); } next_cx } pub fn call_lifetime_start(cx: Block, ptr: ValueRef) { if cx.sess().opts.optimize == config::No { return; } let _icx = push_ctxt("lifetime_start"); let ccx = cx.ccx(); let size = machine::llsize_of_alloc(ccx, val_ty(ptr).element_type()); if size == 0 { return; } let ptr = PointerCast(cx, ptr, Type::i8p(ccx)); let lifetime_start = ccx.get_intrinsic(&"llvm.lifetime.start"); Call(cx, lifetime_start, &[C_u64(ccx, size), ptr], None, DebugLoc::None); } pub fn call_lifetime_end(cx: Block, ptr: ValueRef) { if cx.sess().opts.optimize == config::No { return; } let _icx = push_ctxt("lifetime_end"); let ccx = cx.ccx(); let size = machine::llsize_of_alloc(ccx, val_ty(ptr).element_type()); if size == 0 { return; } let ptr = PointerCast(cx, ptr, Type::i8p(ccx)); let lifetime_end = ccx.get_intrinsic(&"llvm.lifetime.end"); Call(cx, lifetime_end, &[C_u64(ccx, size), ptr], None, DebugLoc::None); } // Generates code for resumption of unwind at the end of a landing pad. pub fn trans_unwind_resume(bcx: Block, lpval: ValueRef) { if !bcx.sess().target.target.options.custom_unwind_resume { Resume(bcx, lpval); } else { let exc_ptr = ExtractValue(bcx, lpval, 0); let llunwresume = bcx.fcx.eh_unwind_resume(); Call(bcx, llunwresume, &[exc_ptr], None, DebugLoc::None); Unreachable(bcx); } } pub fn call_memcpy(cx: Block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef, align: u32) { let _icx = push_ctxt("call_memcpy"); let ccx = cx.ccx(); let ptr_width = &ccx.sess().target.target.target_pointer_width[..]; let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width); let memcpy = ccx.get_intrinsic(&key); let src_ptr = PointerCast(cx, src, Type::i8p(ccx)); let dst_ptr = PointerCast(cx, dst, Type::i8p(ccx)); let size = IntCast(cx, n_bytes, ccx.int_type()); let align = C_i32(ccx, align as i32); let volatile = C_bool(ccx, false); Call(cx, memcpy, &[dst_ptr, src_ptr, size, align, volatile], None, DebugLoc::None); } pub fn memcpy_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, dst: ValueRef, src: ValueRef, t: Ty<'tcx>) { let _icx = push_ctxt("memcpy_ty"); let ccx = bcx.ccx(); if type_is_zero_size(ccx, t) { return; } if t.is_structural() { let llty = type_of::type_of(ccx, t); let llsz = llsize_of(ccx, llty); let llalign = type_of::align_of(ccx, t); call_memcpy(bcx, dst, src, llsz, llalign as u32); } else if common::type_is_fat_ptr(bcx.tcx(), t) { let (data, extra) = load_fat_ptr(bcx, src, t); store_fat_ptr(bcx, data, extra, dst, t); } else { store_ty(bcx, load_ty(bcx, src, t), dst, t); } } pub fn drop_done_fill_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) { if cx.unreachable.get() { return; } let _icx = push_ctxt("drop_done_fill_mem"); let bcx = cx; memfill(&B(bcx), llptr, t, adt::DTOR_DONE); } pub fn init_zero_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) { if cx.unreachable.get() { return; } let _icx = push_ctxt("init_zero_mem"); let bcx = cx; memfill(&B(bcx), llptr, t, 0); } // Always use this function instead of storing a constant byte to the memory // in question. e.g. if you store a zero constant, LLVM will drown in vreg // allocation for large data structures, and the generated code will be // awful. (A telltale sign of this is large quantities of // `mov [byte ptr foo],0` in the generated code.) fn memfill<'a, 'tcx>(b: &Builder<'a, 'tcx>, llptr: ValueRef, ty: Ty<'tcx>, byte: u8) { let _icx = push_ctxt("memfill"); let ccx = b.ccx; let llty = type_of::type_of(ccx, ty); let ptr_width = &ccx.sess().target.target.target_pointer_width[..]; let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width); let llintrinsicfn = ccx.get_intrinsic(&intrinsic_key); let llptr = b.pointercast(llptr, Type::i8(ccx).ptr_to()); let llzeroval = C_u8(ccx, byte); let size = machine::llsize_of(ccx, llty); let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32); let volatile = C_bool(ccx, false); b.call(llintrinsicfn, &[llptr, llzeroval, size, align, volatile], None); } pub fn alloc_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>, name: &str) -> ValueRef { let _icx = push_ctxt("alloc_ty"); let ccx = bcx.ccx(); let ty = type_of::type_of(ccx, t); assert!(!t.has_param_types()); alloca(bcx, ty, name) } pub fn alloca(cx: Block, ty: Type, name: &str) -> ValueRef { let _icx = push_ctxt("alloca"); if cx.unreachable.get() { unsafe { return llvm::LLVMGetUndef(ty.ptr_to().to_ref()); } } debuginfo::clear_source_location(cx.fcx); Alloca(cx, ty, name) } pub fn set_value_name(val: ValueRef, name: &str) { unsafe { let name = CString::new(name).unwrap(); llvm::LLVMSetValueName(val, name.as_ptr()); } } // Creates the alloca slot which holds the pointer to the slot for the final return value pub fn make_return_slot_pointer<'a, 'tcx>(fcx: &FunctionContext<'a, 'tcx>, output_type: Ty<'tcx>) -> ValueRef { let lloutputtype = type_of::type_of(fcx.ccx, output_type); // We create an alloca to hold a pointer of type `output_type` // which will hold the pointer to the right alloca which has the // final ret value if fcx.needs_ret_allocas { // Let's create the stack slot let slot = AllocaFcx(fcx, lloutputtype.ptr_to(), "llretslotptr"); // and if we're using an out pointer, then store that in our newly made slot if type_of::return_uses_outptr(fcx.ccx, output_type) { let outptr = get_param(fcx.llfn, 0); let b = fcx.ccx.builder(); b.position_before(fcx.alloca_insert_pt.get().unwrap()); b.store(outptr, slot); } slot // But if there are no nested returns, we skip the indirection and have a single // retslot } else { if type_of::return_uses_outptr(fcx.ccx, output_type) { get_param(fcx.llfn, 0) } else { AllocaFcx(fcx, lloutputtype, "sret_slot") } } } struct FindNestedReturn { found: bool, } impl FindNestedReturn { fn new() -> FindNestedReturn { FindNestedReturn { found: false, } } } impl<'v> Visitor<'v> for FindNestedReturn { fn visit_expr(&mut self, e: &hir::Expr) { match e.node { hir::ExprRet(..) => { self.found = true; } _ => intravisit::walk_expr(self, e), } } } fn build_cfg(tcx: &ty::ctxt, id: ast::NodeId) -> (ast::NodeId, Option) { let blk = match tcx.map.find(id) { Some(hir_map::NodeItem(i)) => { match i.node { hir::ItemFn(_, _, _, _, _, ref blk) => { blk } _ => tcx.sess.bug("unexpected item variant in has_nested_returns"), } } Some(hir_map::NodeTraitItem(trait_item)) => { match trait_item.node { hir::MethodTraitItem(_, Some(ref body)) => body, _ => { tcx.sess.bug("unexpected variant: trait item other than a provided method in \ has_nested_returns") } } } Some(hir_map::NodeImplItem(impl_item)) => { match impl_item.node { hir::ImplItemKind::Method(_, ref body) => body, _ => { tcx.sess.bug("unexpected variant: non-method impl item in has_nested_returns") } } } Some(hir_map::NodeExpr(e)) => { match e.node { hir::ExprClosure(_, _, ref blk) => blk, _ => tcx.sess.bug("unexpected expr variant in has_nested_returns"), } } Some(hir_map::NodeVariant(..)) | Some(hir_map::NodeStructCtor(..)) => return (ast::DUMMY_NODE_ID, None), // glue, shims, etc None if id == ast::DUMMY_NODE_ID => return (ast::DUMMY_NODE_ID, None), _ => tcx.sess.bug(&format!("unexpected variant in has_nested_returns: {}", tcx.map.path_to_string(id))), }; (blk.id, Some(cfg::CFG::new(tcx, blk))) } // Checks for the presence of "nested returns" in a function. // Nested returns are when the inner expression of a return expression // (the 'expr' in 'return expr') contains a return expression. Only cases // where the outer return is actually reachable are considered. Implicit // returns from the end of blocks are considered as well. // // This check is needed to handle the case where the inner expression is // part of a larger expression that may have already partially-filled the // return slot alloca. This can cause errors related to clean-up due to // the clobbering of the existing value in the return slot. fn has_nested_returns(tcx: &ty::ctxt, cfg: &cfg::CFG, blk_id: ast::NodeId) -> bool { for index in cfg.graph.depth_traverse(cfg.entry) { let n = cfg.graph.node_data(index); match tcx.map.find(n.id()) { Some(hir_map::NodeExpr(ex)) => { if let hir::ExprRet(Some(ref ret_expr)) = ex.node { let mut visitor = FindNestedReturn::new(); intravisit::walk_expr(&mut visitor, &**ret_expr); if visitor.found { return true; } } } Some(hir_map::NodeBlock(blk)) if blk.id == blk_id => { let mut visitor = FindNestedReturn::new(); walk_list!(&mut visitor, visit_expr, &blk.expr); if visitor.found { return true; } } _ => {} } } return false; } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_datums_for_fn_args. // - new_fn_ctxt // - trans_args // // Be warned! You must call `init_function` before doing anything with the // returned function context. pub fn new_fn_ctxt<'a, 'tcx>(ccx: &'a CrateContext<'a, 'tcx>, llfndecl: ValueRef, id: ast::NodeId, has_env: bool, output_type: ty::FnOutput<'tcx>, param_substs: &'tcx Substs<'tcx>, sp: Option, block_arena: &'a TypedArena>) -> FunctionContext<'a, 'tcx> { common::validate_substs(param_substs); debug!("new_fn_ctxt(path={}, id={}, param_substs={:?})", if id == !0 { "".to_string() } else { ccx.tcx().map.path_to_string(id).to_string() }, id, param_substs); let uses_outptr = match output_type { ty::FnConverging(output_type) => { let substd_output_type = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &output_type); type_of::return_uses_outptr(ccx, substd_output_type) } ty::FnDiverging => false, }; let debug_context = debuginfo::create_function_debug_context(ccx, id, param_substs, llfndecl); let (blk_id, cfg) = build_cfg(ccx.tcx(), id); let nested_returns = if let Some(ref cfg) = cfg { has_nested_returns(ccx.tcx(), cfg, blk_id) } else { false }; let mir = ccx.mir_map().get(&id); let mut fcx = FunctionContext { mir: mir, llfn: llfndecl, llenv: None, llretslotptr: Cell::new(None), param_env: ccx.tcx().empty_parameter_environment(), alloca_insert_pt: Cell::new(None), llreturn: Cell::new(None), needs_ret_allocas: nested_returns, personality: Cell::new(None), caller_expects_out_pointer: uses_outptr, lllocals: RefCell::new(NodeMap()), llupvars: RefCell::new(NodeMap()), lldropflag_hints: RefCell::new(DropFlagHintsMap::new()), id: id, param_substs: param_substs, span: sp, block_arena: block_arena, ccx: ccx, debug_context: debug_context, scopes: RefCell::new(Vec::new()), cfg: cfg, }; if has_env { fcx.llenv = Some(get_param(fcx.llfn, fcx.env_arg_pos() as c_uint)) } fcx } /// Performs setup on a newly created function, creating the entry scope block /// and allocating space for the return pointer. pub fn init_function<'a, 'tcx>(fcx: &'a FunctionContext<'a, 'tcx>, skip_retptr: bool, output: ty::FnOutput<'tcx>) -> Block<'a, 'tcx> { let entry_bcx = fcx.new_temp_block("entry-block"); // Use a dummy instruction as the insertion point for all allocas. // This is later removed in FunctionContext::cleanup. fcx.alloca_insert_pt.set(Some(unsafe { Load(entry_bcx, C_null(Type::i8p(fcx.ccx))); llvm::LLVMGetFirstInstruction(entry_bcx.llbb) })); if let ty::FnConverging(output_type) = output { // This shouldn't need to recompute the return type, // as new_fn_ctxt did it already. let substd_output_type = fcx.monomorphize(&output_type); if !return_type_is_void(fcx.ccx, substd_output_type) { // If the function returns nil/bot, there is no real return // value, so do not set `llretslotptr`. if !skip_retptr || fcx.caller_expects_out_pointer { // Otherwise, we normally allocate the llretslotptr, unless we // have been instructed to skip it for immediate return // values. fcx.llretslotptr.set(Some(make_return_slot_pointer(fcx, substd_output_type))); } } } // Create the drop-flag hints for every unfragmented path in the function. let tcx = fcx.ccx.tcx(); let fn_did = tcx.map.local_def_id(fcx.id); let mut hints = fcx.lldropflag_hints.borrow_mut(); let fragment_infos = tcx.fragment_infos.borrow(); // Intern table for drop-flag hint datums. let mut seen = HashMap::new(); if let Some(fragment_infos) = fragment_infos.get(&fn_did) { for &info in fragment_infos { let make_datum = |id| { let init_val = C_u8(fcx.ccx, adt::DTOR_NEEDED_HINT); let llname = &format!("dropflag_hint_{}", id); debug!("adding hint {}", llname); let ty = tcx.types.u8; let ptr = alloc_ty(entry_bcx, ty, llname); Store(entry_bcx, init_val, ptr); let flag = datum::Lvalue::new_dropflag_hint("base::init_function"); datum::Datum::new(ptr, ty, flag) }; let (var, datum) = match info { ty::FragmentInfo::Moved { var, .. } | ty::FragmentInfo::Assigned { var, .. } => { let datum = seen.get(&var).cloned().unwrap_or_else(|| { let datum = make_datum(var); seen.insert(var, datum.clone()); datum }); (var, datum) } }; match info { ty::FragmentInfo::Moved { move_expr: expr_id, .. } => { debug!("FragmentInfo::Moved insert drop hint for {}", expr_id); hints.insert(expr_id, DropHint::new(var, datum)); } ty::FragmentInfo::Assigned { assignee_id: expr_id, .. } => { debug!("FragmentInfo::Assigned insert drop hint for {}", expr_id); hints.insert(expr_id, DropHint::new(var, datum)); } } } } entry_bcx } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_datums_for_fn_args. // - new_fn_ctxt // - trans_args pub fn arg_kind<'a, 'tcx>(cx: &FunctionContext<'a, 'tcx>, t: Ty<'tcx>) -> datum::Rvalue { use trans::datum::{ByRef, ByValue}; datum::Rvalue { mode: if arg_is_indirect(cx.ccx, t) { ByRef } else { ByValue } } } // create_datums_for_fn_args: creates lvalue datums for each of the // incoming function arguments. pub fn create_datums_for_fn_args<'a, 'tcx>(mut bcx: Block<'a, 'tcx>, args: &[hir::Arg], arg_tys: &[Ty<'tcx>], has_tupled_arg: bool, arg_scope: cleanup::CustomScopeIndex) -> Block<'a, 'tcx> { let _icx = push_ctxt("create_datums_for_fn_args"); let fcx = bcx.fcx; let arg_scope_id = cleanup::CustomScope(arg_scope); // Return an array wrapping the ValueRefs that we get from `get_param` for // each argument into datums. // // For certain mode/type combinations, the raw llarg values are passed // by value. However, within the fn body itself, we want to always // have all locals and arguments be by-ref so that we can cancel the // cleanup and for better interaction with LLVM's debug info. So, if // the argument would be passed by value, we store it into an alloca. // This alloca should be optimized away by LLVM's mem-to-reg pass in // the event it's not truly needed. let mut idx = fcx.arg_offset() as c_uint; for (i, &arg_ty) in arg_tys.iter().enumerate() { let arg_datum = if !has_tupled_arg || i < arg_tys.len() - 1 { if type_of::arg_is_indirect(bcx.ccx(), arg_ty) && bcx.sess().opts.debuginfo != FullDebugInfo { // Don't copy an indirect argument to an alloca, the caller // already put it in a temporary alloca and gave it up, unless // we emit extra-debug-info, which requires local allocas :(. let llarg = get_param(fcx.llfn, idx); idx += 1; bcx.fcx.schedule_lifetime_end(arg_scope_id, llarg); bcx.fcx.schedule_drop_mem(arg_scope_id, llarg, arg_ty, None); datum::Datum::new(llarg, arg_ty, datum::Lvalue::new("create_datum_for_fn_args")) } else if common::type_is_fat_ptr(bcx.tcx(), arg_ty) { let data = get_param(fcx.llfn, idx); let extra = get_param(fcx.llfn, idx + 1); idx += 2; unpack_datum!(bcx, datum::lvalue_scratch_datum(bcx, arg_ty, "", arg_scope_id, (data, extra), |(data, extra), bcx, dst| { Store(bcx, data, expr::get_dataptr(bcx, dst)); Store(bcx, extra, expr::get_meta(bcx, dst)); bcx })) } else { let llarg = get_param(fcx.llfn, idx); idx += 1; let tmp = datum::Datum::new(llarg, arg_ty, arg_kind(fcx, arg_ty)); unpack_datum!(bcx, datum::lvalue_scratch_datum(bcx, arg_ty, "", arg_scope_id, tmp, |tmp, bcx, dst| tmp.store_to(bcx, dst))) } } else { // FIXME(pcwalton): Reduce the amount of code bloat this is responsible for. match arg_ty.sty { ty::TyTuple(ref tupled_arg_tys) => { unpack_datum!(bcx, datum::lvalue_scratch_datum(bcx, arg_ty, "tupled_args", arg_scope_id, (), |(), mut bcx, llval| { for (j, &tupled_arg_ty) in tupled_arg_tys.iter().enumerate() { let lldest = StructGEP(bcx, llval, j); if common::type_is_fat_ptr(bcx.tcx(), tupled_arg_ty) { let data = get_param(bcx.fcx.llfn, idx); let extra = get_param(bcx.fcx.llfn, idx + 1); Store(bcx, data, expr::get_dataptr(bcx, lldest)); Store(bcx, extra, expr::get_meta(bcx, lldest)); idx += 2; } else { let datum = datum::Datum::new( get_param(bcx.fcx.llfn, idx), tupled_arg_ty, arg_kind(bcx.fcx, tupled_arg_ty)); idx += 1; bcx = datum.store_to(bcx, lldest); }; } bcx })) } _ => { bcx.tcx() .sess .bug("last argument of a function with `rust-call` ABI isn't a tuple?!") } } }; let pat = &*args[i].pat; bcx = if let Some(name) = simple_name(pat) { // Generate nicer LLVM for the common case of fn a pattern // like `x: T` set_value_name(arg_datum.val, &bcx.name(name)); bcx.fcx.lllocals.borrow_mut().insert(pat.id, arg_datum); bcx } else { // General path. Copy out the values that are used in the // pattern. _match::bind_irrefutable_pat(bcx, pat, arg_datum.match_input(), arg_scope_id) }; debuginfo::create_argument_metadata(bcx, &args[i]); } bcx } // Ties up the llstaticallocas -> llloadenv -> lltop edges, // and builds the return block. pub fn finish_fn<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>, last_bcx: Block<'blk, 'tcx>, retty: ty::FnOutput<'tcx>, ret_debug_loc: DebugLoc) { let _icx = push_ctxt("finish_fn"); let ret_cx = match fcx.llreturn.get() { Some(llreturn) => { if !last_bcx.terminated.get() { Br(last_bcx, llreturn, DebugLoc::None); } raw_block(fcx, false, llreturn) } None => last_bcx, }; // This shouldn't need to recompute the return type, // as new_fn_ctxt did it already. let substd_retty = fcx.monomorphize(&retty); build_return_block(fcx, ret_cx, substd_retty, ret_debug_loc); debuginfo::clear_source_location(fcx); fcx.cleanup(); } // Builds the return block for a function. pub fn build_return_block<'blk, 'tcx>(fcx: &FunctionContext<'blk, 'tcx>, ret_cx: Block<'blk, 'tcx>, retty: ty::FnOutput<'tcx>, ret_debug_location: DebugLoc) { if fcx.llretslotptr.get().is_none() || (!fcx.needs_ret_allocas && fcx.caller_expects_out_pointer) { return RetVoid(ret_cx, ret_debug_location); } let retslot = if fcx.needs_ret_allocas { Load(ret_cx, fcx.llretslotptr.get().unwrap()) } else { fcx.llretslotptr.get().unwrap() }; let retptr = Value(retslot); match retptr.get_dominating_store(ret_cx) { // If there's only a single store to the ret slot, we can directly return // the value that was stored and omit the store and the alloca Some(s) => { let retval = s.get_operand(0).unwrap().get(); s.erase_from_parent(); if retptr.has_no_uses() { retptr.erase_from_parent(); } let retval = if retty == ty::FnConverging(fcx.ccx.tcx().types.bool) { Trunc(ret_cx, retval, Type::i1(fcx.ccx)) } else { retval }; if fcx.caller_expects_out_pointer { if let ty::FnConverging(retty) = retty { store_ty(ret_cx, retval, get_param(fcx.llfn, 0), retty); } RetVoid(ret_cx, ret_debug_location) } else { Ret(ret_cx, retval, ret_debug_location) } } // Otherwise, copy the return value to the ret slot None => match retty { ty::FnConverging(retty) => { if fcx.caller_expects_out_pointer { memcpy_ty(ret_cx, get_param(fcx.llfn, 0), retslot, retty); RetVoid(ret_cx, ret_debug_location) } else { Ret(ret_cx, load_ty(ret_cx, retslot, retty), ret_debug_location) } } ty::FnDiverging => { if fcx.caller_expects_out_pointer { RetVoid(ret_cx, ret_debug_location) } else { Ret(ret_cx, C_undef(Type::nil(fcx.ccx)), ret_debug_location) } } }, } } /// Builds an LLVM function out of a source function. /// /// If the function closes over its environment a closure will be returned. pub fn trans_closure<'a, 'b, 'tcx>(ccx: &CrateContext<'a, 'tcx>, decl: &hir::FnDecl, body: &hir::Block, llfndecl: ValueRef, param_substs: &'tcx Substs<'tcx>, fn_ast_id: ast::NodeId, attributes: &[ast::Attribute], output_type: ty::FnOutput<'tcx>, abi: Abi, closure_env: closure::ClosureEnv<'b>) { ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1); let _icx = push_ctxt("trans_closure"); attributes::emit_uwtable(llfndecl, true); debug!("trans_closure(..., param_substs={:?})", param_substs); let has_env = match closure_env { closure::ClosureEnv::Closure(..) => true, closure::ClosureEnv::NotClosure => false, }; let (arena, fcx): (TypedArena<_>, FunctionContext); arena = TypedArena::new(); fcx = new_fn_ctxt(ccx, llfndecl, fn_ast_id, has_env, output_type, param_substs, Some(body.span), &arena); let mut bcx = init_function(&fcx, false, output_type); if attributes.iter().any(|item| item.check_name("rustc_mir")) { mir::trans_mir(bcx); fcx.cleanup(); return; } // cleanup scope for the incoming arguments let fn_cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(ccx, fn_ast_id, body.span, true); let arg_scope = fcx.push_custom_cleanup_scope_with_debug_loc(fn_cleanup_debug_loc); let block_ty = node_id_type(bcx, body.id); // Set up arguments to the function. let monomorphized_arg_types = decl.inputs .iter() .map(|arg| node_id_type(bcx, arg.id)) .collect::>(); for monomorphized_arg_type in &monomorphized_arg_types { debug!("trans_closure: monomorphized_arg_type: {:?}", monomorphized_arg_type); } debug!("trans_closure: function lltype: {}", bcx.fcx.ccx.tn().val_to_string(bcx.fcx.llfn)); let has_tupled_arg = match closure_env { closure::ClosureEnv::NotClosure => abi == RustCall, _ => false, }; bcx = create_datums_for_fn_args(bcx, &decl.inputs, &monomorphized_arg_types, has_tupled_arg, arg_scope); bcx = closure_env.load(bcx, cleanup::CustomScope(arg_scope)); // Up until here, IR instructions for this function have explicitly not been annotated with // source code location, so we don't step into call setup code. From here on, source location // emitting should be enabled. debuginfo::start_emitting_source_locations(&fcx); let dest = match fcx.llretslotptr.get() { Some(_) => expr::SaveIn(fcx.get_ret_slot(bcx, ty::FnConverging(block_ty), "iret_slot")), None => { assert!(type_is_zero_size(bcx.ccx(), block_ty)); expr::Ignore } }; // This call to trans_block is the place where we bridge between // translation calls that don't have a return value (trans_crate, // trans_mod, trans_item, et cetera) and those that do // (trans_block, trans_expr, et cetera). bcx = controlflow::trans_block(bcx, body, dest); match dest { expr::SaveIn(slot) if fcx.needs_ret_allocas => { Store(bcx, slot, fcx.llretslotptr.get().unwrap()); } _ => {} } match fcx.llreturn.get() { Some(_) => { Br(bcx, fcx.return_exit_block(), DebugLoc::None); fcx.pop_custom_cleanup_scope(arg_scope); } None => { // Microoptimization writ large: avoid creating a separate // llreturn basic block bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope); } }; // Put return block after all other blocks. // This somewhat improves single-stepping experience in debugger. unsafe { let llreturn = fcx.llreturn.get(); if let Some(llreturn) = llreturn { llvm::LLVMMoveBasicBlockAfter(llreturn, bcx.llbb); } } let ret_debug_loc = DebugLoc::At(fn_cleanup_debug_loc.id, fn_cleanup_debug_loc.span); // Insert the mandatory first few basic blocks before lltop. finish_fn(&fcx, bcx, output_type, ret_debug_loc); } /// Creates an LLVM function corresponding to a source language function. pub fn trans_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, decl: &hir::FnDecl, body: &hir::Block, llfndecl: ValueRef, param_substs: &'tcx Substs<'tcx>, id: ast::NodeId, attrs: &[ast::Attribute]) { let _s = StatRecorder::new(ccx, ccx.tcx().map.path_to_string(id).to_string()); debug!("trans_fn(param_substs={:?})", param_substs); let _icx = push_ctxt("trans_fn"); let fn_ty = ccx.tcx().node_id_to_type(id); let fn_ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &fn_ty); let sig = fn_ty.fn_sig(); let sig = ccx.tcx().erase_late_bound_regions(&sig); let sig = infer::normalize_associated_type(ccx.tcx(), &sig); let output_type = sig.output; let abi = fn_ty.fn_abi(); trans_closure(ccx, decl, body, llfndecl, param_substs, id, attrs, output_type, abi, closure::ClosureEnv::NotClosure); } pub fn trans_enum_variant<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ctor_id: ast::NodeId, disr: ty::Disr, param_substs: &'tcx Substs<'tcx>, llfndecl: ValueRef) { let _icx = push_ctxt("trans_enum_variant"); trans_enum_variant_or_tuple_like_struct(ccx, ctor_id, disr, param_substs, llfndecl); } pub fn trans_named_tuple_constructor<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>, ctor_ty: Ty<'tcx>, disr: ty::Disr, args: callee::CallArgs, dest: expr::Dest, debug_loc: DebugLoc) -> Result<'blk, 'tcx> { let ccx = bcx.fcx.ccx; let sig = ccx.tcx().erase_late_bound_regions(&ctor_ty.fn_sig()); let sig = infer::normalize_associated_type(ccx.tcx(), &sig); let result_ty = sig.output.unwrap(); // Get location to store the result. If the user does not care about // the result, just make a stack slot let llresult = match dest { expr::SaveIn(d) => d, expr::Ignore => { if !type_is_zero_size(ccx, result_ty) { let llresult = alloc_ty(bcx, result_ty, "constructor_result"); call_lifetime_start(bcx, llresult); llresult } else { C_undef(type_of::type_of(ccx, result_ty).ptr_to()) } } }; if !type_is_zero_size(ccx, result_ty) { match args { callee::ArgExprs(exprs) => { let fields = exprs.iter().map(|x| &**x).enumerate().collect::>(); bcx = expr::trans_adt(bcx, result_ty, disr, &fields[..], None, expr::SaveIn(llresult), debug_loc); } _ => ccx.sess().bug("expected expr as arguments for variant/struct tuple constructor"), } } else { // Just eval all the expressions (if any). Since expressions in Rust can have arbitrary // contents, there could be side-effects we need from them. match args { callee::ArgExprs(exprs) => { for expr in exprs { bcx = expr::trans_into(bcx, expr, expr::Ignore); } } _ => (), } } // If the caller doesn't care about the result // drop the temporary we made let bcx = match dest { expr::SaveIn(_) => bcx, expr::Ignore => { let bcx = glue::drop_ty(bcx, llresult, result_ty, debug_loc); if !type_is_zero_size(ccx, result_ty) { call_lifetime_end(bcx, llresult); } bcx } }; Result::new(bcx, llresult) } pub fn trans_tuple_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ctor_id: ast::NodeId, param_substs: &'tcx Substs<'tcx>, llfndecl: ValueRef) { let _icx = push_ctxt("trans_tuple_struct"); trans_enum_variant_or_tuple_like_struct(ccx, ctor_id, 0, param_substs, llfndecl); } fn trans_enum_variant_or_tuple_like_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ctor_id: ast::NodeId, disr: ty::Disr, param_substs: &'tcx Substs<'tcx>, llfndecl: ValueRef) { let ctor_ty = ccx.tcx().node_id_to_type(ctor_id); let ctor_ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &ctor_ty); let sig = ccx.tcx().erase_late_bound_regions(&ctor_ty.fn_sig()); let sig = infer::normalize_associated_type(ccx.tcx(), &sig); let arg_tys = sig.inputs; let result_ty = sig.output; let (arena, fcx): (TypedArena<_>, FunctionContext); arena = TypedArena::new(); fcx = new_fn_ctxt(ccx, llfndecl, ctor_id, false, result_ty, param_substs, None, &arena); let bcx = init_function(&fcx, false, result_ty); assert!(!fcx.needs_ret_allocas); if !type_is_zero_size(fcx.ccx, result_ty.unwrap()) { let dest = fcx.get_ret_slot(bcx, result_ty, "eret_slot"); let dest_val = adt::MaybeSizedValue::sized(dest); // Can return unsized value let repr = adt::represent_type(ccx, result_ty.unwrap()); let mut llarg_idx = fcx.arg_offset() as c_uint; for (i, arg_ty) in arg_tys.into_iter().enumerate() { let lldestptr = adt::trans_field_ptr(bcx, &*repr, dest_val, disr, i); if common::type_is_fat_ptr(bcx.tcx(), arg_ty) { Store(bcx, get_param(fcx.llfn, llarg_idx), expr::get_dataptr(bcx, lldestptr)); Store(bcx, get_param(fcx.llfn, llarg_idx + 1), expr::get_meta(bcx, lldestptr)); llarg_idx += 2; } else { let arg = get_param(fcx.llfn, llarg_idx); llarg_idx += 1; if arg_is_indirect(ccx, arg_ty) { memcpy_ty(bcx, lldestptr, arg, arg_ty); } else { store_ty(bcx, arg, lldestptr, arg_ty); } } } adt::trans_set_discr(bcx, &*repr, dest, disr); } finish_fn(&fcx, bcx, result_ty, DebugLoc::None); } fn enum_variant_size_lint(ccx: &CrateContext, enum_def: &hir::EnumDef, sp: Span, id: ast::NodeId) { let mut sizes = Vec::new(); // does no allocation if no pushes, thankfully let print_info = ccx.sess().print_enum_sizes(); let levels = ccx.tcx().node_lint_levels.borrow(); let lint_id = lint::LintId::of(lint::builtin::VARIANT_SIZE_DIFFERENCES); let lvlsrc = levels.get(&(id, lint_id)); let is_allow = lvlsrc.map_or(true, |&(lvl, _)| lvl == lint::Allow); if is_allow && !print_info { // we're not interested in anything here return; } let ty = ccx.tcx().node_id_to_type(id); let avar = adt::represent_type(ccx, ty); match *avar { adt::General(_, ref variants, _) => { for var in variants { let mut size = 0; for field in var.fields.iter().skip(1) { // skip the discriminant size += llsize_of_real(ccx, sizing_type_of(ccx, *field)); } sizes.push(size); } }, _ => { /* its size is either constant or unimportant */ } } let (largest, slargest, largest_index) = sizes.iter().enumerate().fold((0, 0, 0), |(l, s, li), (idx, &size)| if size > l { (size, l, idx) } else if size > s { (l, size, li) } else { (l, s, li) } ); // FIXME(#30505) Should use logging for this. if print_info { let llty = type_of::sizing_type_of(ccx, ty); let sess = &ccx.tcx().sess; sess.span_note_without_error(sp, &*format!("total size: {} bytes", llsize_of_real(ccx, llty))); match *avar { adt::General(..) => { for (i, var) in enum_def.variants.iter().enumerate() { ccx.tcx() .sess .span_note_without_error(var.span, &*format!("variant data: {} bytes", sizes[i])); } } _ => {} } } // we only warn if the largest variant is at least thrice as large as // the second-largest. if !is_allow && largest > slargest * 3 && slargest > 0 { // Use lint::raw_emit_lint rather than sess.add_lint because the lint-printing // pass for the latter already ran. lint::raw_struct_lint(&ccx.tcx().sess, lint::builtin::VARIANT_SIZE_DIFFERENCES, *lvlsrc.unwrap(), Some(sp), &format!("enum variant is more than three times larger ({} bytes) \ than the next largest (ignoring padding)", largest)) .map(|mut e| { e.span_note(enum_def.variants[largest_index].span, "this variant is the largest") .emit(); }); } } pub fn llvm_linkage_by_name(name: &str) -> Option { // Use the names from src/llvm/docs/LangRef.rst here. Most types are only // applicable to variable declarations and may not really make sense for // Rust code in the first place but whitelist them anyway and trust that // the user knows what s/he's doing. Who knows, unanticipated use cases // may pop up in the future. // // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported // and don't have to be, LLVM treats them as no-ops. match name { "appending" => Some(llvm::AppendingLinkage), "available_externally" => Some(llvm::AvailableExternallyLinkage), "common" => Some(llvm::CommonLinkage), "extern_weak" => Some(llvm::ExternalWeakLinkage), "external" => Some(llvm::ExternalLinkage), "internal" => Some(llvm::InternalLinkage), "linkonce" => Some(llvm::LinkOnceAnyLinkage), "linkonce_odr" => Some(llvm::LinkOnceODRLinkage), "private" => Some(llvm::PrivateLinkage), "weak" => Some(llvm::WeakAnyLinkage), "weak_odr" => Some(llvm::WeakODRLinkage), _ => None, } } /// Enum describing the origin of an LLVM `Value`, for linkage purposes. #[derive(Copy, Clone)] pub enum ValueOrigin { /// The LLVM `Value` is in this context because the corresponding item was /// assigned to the current compilation unit. OriginalTranslation, /// The `Value`'s corresponding item was assigned to some other compilation /// unit, but the `Value` was translated in this context anyway because the /// item is marked `#[inline]`. InlinedCopy, } /// Set the appropriate linkage for an LLVM `ValueRef` (function or global). /// If the `llval` is the direct translation of a specific Rust item, `id` /// should be set to the `NodeId` of that item. (This mapping should be /// 1-to-1, so monomorphizations and drop/visit glue should have `id` set to /// `None`.) `llval_origin` indicates whether `llval` is the translation of an /// item assigned to `ccx`'s compilation unit or an inlined copy of an item /// assigned to a different compilation unit. pub fn update_linkage(ccx: &CrateContext, llval: ValueRef, id: Option, llval_origin: ValueOrigin) { match llval_origin { InlinedCopy => { // `llval` is a translation of an item defined in a separate // compilation unit. This only makes sense if there are at least // two compilation units. assert!(ccx.sess().opts.cg.codegen_units > 1); // `llval` is a copy of something defined elsewhere, so use // `AvailableExternallyLinkage` to avoid duplicating code in the // output. llvm::SetLinkage(llval, llvm::AvailableExternallyLinkage); return; }, OriginalTranslation => {}, } if let Some(id) = id { let item = ccx.tcx().map.get(id); if let hir_map::NodeItem(i) = item { if let Some(name) = attr::first_attr_value_str_by_name(&i.attrs, "linkage") { if let Some(linkage) = llvm_linkage_by_name(&name) { llvm::SetLinkage(llval, linkage); } else { ccx.sess().span_fatal(i.span, "invalid linkage specified"); } return; } } } match id { Some(id) if ccx.reachable().contains(&id) => { llvm::SetLinkage(llval, llvm::ExternalLinkage); }, _ => { // `id` does not refer to an item in `ccx.reachable`. if ccx.sess().opts.cg.codegen_units > 1 { llvm::SetLinkage(llval, llvm::ExternalLinkage); } else { llvm::SetLinkage(llval, llvm::InternalLinkage); } }, } } fn set_global_section(ccx: &CrateContext, llval: ValueRef, i: &hir::Item) { match attr::first_attr_value_str_by_name(&i.attrs, "link_section") { Some(sect) => { if contains_null(§) { ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", §)); } unsafe { let buf = CString::new(sect.as_bytes()).unwrap(); llvm::LLVMSetSection(llval, buf.as_ptr()); } }, None => () } } pub fn trans_item(ccx: &CrateContext, item: &hir::Item) { let _icx = push_ctxt("trans_item"); let from_external = ccx.external_srcs().borrow().contains_key(&item.id); match item.node { hir::ItemFn(ref decl, _, _, abi, ref generics, ref body) => { if !generics.is_type_parameterized() { let trans_everywhere = attr::requests_inline(&item.attrs); // Ignore `trans_everywhere` for cross-crate inlined items // (`from_external`). `trans_item` will be called once for each // compilation unit that references the item, so it will still get // translated everywhere it's needed. for (ref ccx, is_origin) in ccx.maybe_iter(!from_external && trans_everywhere) { let llfn = get_item_val(ccx, item.id); let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty()); if abi != Rust { foreign::trans_rust_fn_with_foreign_abi(ccx, &**decl, &**body, &item.attrs, llfn, empty_substs, item.id, None); } else { trans_fn(ccx, &**decl, &**body, llfn, empty_substs, item.id, &item.attrs); } set_global_section(ccx, llfn, item); update_linkage(ccx, llfn, Some(item.id), if is_origin { OriginalTranslation } else { InlinedCopy }); if is_entry_fn(ccx.sess(), item.id) { create_entry_wrapper(ccx, item.span, llfn); // check for the #[rustc_error] annotation, which forces an // error in trans. This is used to write compile-fail tests // that actually test that compilation succeeds without // reporting an error. let item_def_id = ccx.tcx().map.local_def_id(item.id); if ccx.tcx().has_attr(item_def_id, "rustc_error") { ccx.tcx().sess.span_fatal(item.span, "compilation successful"); } } } } } hir::ItemImpl(_, _, ref generics, _, _, ref impl_items) => { meth::trans_impl(ccx, item.name, impl_items, generics, item.id); } hir::ItemMod(_) => { // modules have no equivalent at runtime, they just affect // the mangled names of things contained within } hir::ItemEnum(ref enum_definition, ref gens) => { if gens.ty_params.is_empty() { // sizes only make sense for non-generic types enum_variant_size_lint(ccx, enum_definition, item.span, item.id); } } hir::ItemConst(..) => {} hir::ItemStatic(_, m, ref expr) => { let g = match consts::trans_static(ccx, m, expr, item.id, &item.attrs) { Ok(g) => g, Err(err) => ccx.tcx().sess.span_fatal(expr.span, &err.description()), }; set_global_section(ccx, g, item); update_linkage(ccx, g, Some(item.id), OriginalTranslation); } hir::ItemForeignMod(ref foreign_mod) => { foreign::trans_foreign_mod(ccx, foreign_mod); } hir::ItemTrait(..) => {} _ => { // fall through } } } // only use this for foreign function ABIs and glue, use `register_fn` for Rust functions pub fn register_fn_llvmty(ccx: &CrateContext, sp: Span, sym: String, node_id: ast::NodeId, cc: llvm::CallConv, llfty: Type) -> ValueRef { debug!("register_fn_llvmty id={} sym={}", node_id, sym); let llfn = declare::define_fn(ccx, &sym[..], cc, llfty, ty::FnConverging(ccx.tcx().mk_nil())).unwrap_or_else(||{ ccx.sess().span_fatal(sp, &format!("symbol `{}` is already defined", sym)); }); finish_register_fn(ccx, sym, node_id); llfn } fn finish_register_fn(ccx: &CrateContext, sym: String, node_id: ast::NodeId) { ccx.item_symbols().borrow_mut().insert(node_id, sym); } fn register_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, sp: Span, sym: String, node_id: ast::NodeId, node_type: Ty<'tcx>) -> ValueRef { if let ty::TyBareFn(_, ref f) = node_type.sty { if f.abi != Rust && f.abi != RustCall { ccx.sess().span_bug(sp, &format!("only the `{}` or `{}` calling conventions are valid \ for this function; `{}` was specified", Rust.name(), RustCall.name(), f.abi.name())); } } else { ccx.sess().span_bug(sp, "expected bare rust function") } let llfn = declare::define_rust_fn(ccx, &sym[..], node_type).unwrap_or_else(|| { ccx.sess().span_fatal(sp, &format!("symbol `{}` is already defined", sym)); }); finish_register_fn(ccx, sym, node_id); llfn } pub fn is_entry_fn(sess: &Session, node_id: ast::NodeId) -> bool { match *sess.entry_fn.borrow() { Some((entry_id, _)) => node_id == entry_id, None => false, } } /// Create the `main` function which will initialise the rust runtime and call users’ main /// function. pub fn create_entry_wrapper(ccx: &CrateContext, sp: Span, main_llfn: ValueRef) { let et = ccx.sess().entry_type.get().unwrap(); match et { config::EntryMain => { create_entry_fn(ccx, sp, main_llfn, true); } config::EntryStart => create_entry_fn(ccx, sp, main_llfn, false), config::EntryNone => {} // Do nothing. } fn create_entry_fn(ccx: &CrateContext, sp: Span, rust_main: ValueRef, use_start_lang_item: bool) { let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()], &ccx.int_type()); let llfn = declare::define_cfn(ccx, "main", llfty, ccx.tcx().mk_nil()).unwrap_or_else(|| { // FIXME: We should be smart and show a better diagnostic here. ccx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times") .help("did you use #[no_mangle] on `fn main`? Use #[start] instead") .emit(); ccx.sess().abort_if_errors(); panic!(); }); let llbb = unsafe { llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), llfn, "top\0".as_ptr() as *const _) }; let bld = ccx.raw_builder(); unsafe { llvm::LLVMPositionBuilderAtEnd(bld, llbb); debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx); let (start_fn, args) = if use_start_lang_item { let start_def_id = match ccx.tcx().lang_items.require(StartFnLangItem) { Ok(id) => id, Err(s) => { ccx.sess().fatal(&s[..]); } }; let start_fn = if let Some(start_node_id) = ccx.tcx() .map .as_local_node_id(start_def_id) { get_item_val(ccx, start_node_id) } else { let start_fn_type = ccx.tcx().lookup_item_type(start_def_id).ty; trans_external_path(ccx, start_def_id, start_fn_type) }; let args = { let opaque_rust_main = llvm::LLVMBuildPointerCast(bld, rust_main, Type::i8p(ccx).to_ref(), "rust_main\0".as_ptr() as *const _); vec![opaque_rust_main, get_param(llfn, 0), get_param(llfn, 1)] }; (start_fn, args) } else { debug!("using user-defined start fn"); let args = vec![get_param(llfn, 0 as c_uint), get_param(llfn, 1 as c_uint)]; (rust_main, args) }; let result = llvm::LLVMBuildCall(bld, start_fn, args.as_ptr(), args.len() as c_uint, noname()); llvm::LLVMBuildRet(bld, result); } } } fn exported_name<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, id: ast::NodeId, ty: Ty<'tcx>, attrs: &[ast::Attribute]) -> String { match ccx.external_srcs().borrow().get(&id) { Some(&did) => { let sym = ccx.sess().cstore.item_symbol(did); debug!("found item {} in other crate...", sym); return sym; } None => {} } match attr::find_export_name_attr(ccx.sess().diagnostic(), attrs) { // Use provided name Some(name) => name.to_string(), _ => { let path = ccx.tcx().map.def_path_from_id(id); if attr::contains_name(attrs, "no_mangle") { // Don't mangle path.last().unwrap().data.to_string() } else { match weak_lang_items::link_name(attrs) { Some(name) => name.to_string(), None => { // Usual name mangling mangle_exported_name(ccx, path, ty, id) } } } } } } fn contains_null(s: &str) -> bool { s.bytes().any(|b| b == 0) } pub fn get_item_val(ccx: &CrateContext, id: ast::NodeId) -> ValueRef { debug!("get_item_val(id=`{}`)", id); match ccx.item_vals().borrow().get(&id).cloned() { Some(v) => return v, None => {} } let item = ccx.tcx().map.get(id); debug!("get_item_val: id={} item={:?}", id, item); let val = match item { hir_map::NodeItem(i) => { let ty = ccx.tcx().node_id_to_type(i.id); let sym = || exported_name(ccx, id, ty, &i.attrs); let v = match i.node { hir::ItemStatic(..) => { // If this static came from an external crate, then // we need to get the symbol from metadata instead of // using the current crate's name/version // information in the hash of the symbol let sym = sym(); debug!("making {}", sym); // Create the global before evaluating the initializer; // this is necessary to allow recursive statics. let llty = type_of(ccx, ty); let g = declare::define_global(ccx, &sym[..], llty).unwrap_or_else(|| { ccx.sess() .span_fatal(i.span, &format!("symbol `{}` is already defined", sym)) }); ccx.item_symbols().borrow_mut().insert(i.id, sym); g } hir::ItemFn(_, _, _, abi, _, _) => { let sym = sym(); let llfn = if abi == Rust { register_fn(ccx, i.span, sym, i.id, ty) } else { foreign::register_rust_fn_with_foreign_abi(ccx, i.span, sym, i.id) }; attributes::from_fn_attrs(ccx, &i.attrs, llfn); llfn } _ => ccx.sess().bug("get_item_val: weird result in table"), }; v } hir_map::NodeTraitItem(trait_item) => { debug!("get_item_val(): processing a NodeTraitItem"); match trait_item.node { hir::MethodTraitItem(_, Some(_)) => { register_method(ccx, id, &trait_item.attrs, trait_item.span) } _ => { ccx.sess().span_bug(trait_item.span, "unexpected variant: trait item other than a provided \ method in get_item_val()"); } } } hir_map::NodeImplItem(impl_item) => { match impl_item.node { hir::ImplItemKind::Method(..) => { register_method(ccx, id, &impl_item.attrs, impl_item.span) } _ => { ccx.sess().span_bug(impl_item.span, "unexpected variant: non-method impl item in \ get_item_val()"); } } } hir_map::NodeForeignItem(ni) => { match ni.node { hir::ForeignItemFn(..) => { let abi = ccx.tcx().map.get_foreign_abi(id); let ty = ccx.tcx().node_id_to_type(ni.id); let name = foreign::link_name(&*ni); foreign::register_foreign_item_fn(ccx, abi, ty, &name, &ni.attrs) } hir::ForeignItemStatic(..) => { foreign::register_static(ccx, &*ni) } } } hir_map::NodeVariant(ref v) => { let llfn; let fields = if v.node.data.is_struct() { ccx.sess().bug("struct variant kind unexpected in get_item_val") } else { v.node.data.fields() }; assert!(!fields.is_empty()); let ty = ccx.tcx().node_id_to_type(id); let parent = ccx.tcx().map.get_parent(id); let enm = ccx.tcx().map.expect_item(parent); let sym = exported_name(ccx, id, ty, &enm.attrs); llfn = match enm.node { hir::ItemEnum(_, _) => { register_fn(ccx, (*v).span, sym, id, ty) } _ => ccx.sess().bug("NodeVariant, shouldn't happen"), }; attributes::inline(llfn, attributes::InlineAttr::Hint); llfn } hir_map::NodeStructCtor(struct_def) => { // Only register the constructor if this is a tuple-like struct. let ctor_id = if struct_def.is_struct() { ccx.sess().bug("attempt to register a constructor of a non-tuple-like struct") } else { struct_def.id() }; let parent = ccx.tcx().map.get_parent(id); let struct_item = ccx.tcx().map.expect_item(parent); let ty = ccx.tcx().node_id_to_type(ctor_id); let sym = exported_name(ccx, id, ty, &struct_item.attrs); let llfn = register_fn(ccx, struct_item.span, sym, ctor_id, ty); attributes::inline(llfn, attributes::InlineAttr::Hint); llfn } ref variant => { ccx.sess().bug(&format!("get_item_val(): unexpected variant: {:?}", variant)) } }; // All LLVM globals and functions are initially created as external-linkage // declarations. If `trans_item`/`trans_fn` later turns the declaration // into a definition, it adjusts the linkage then (using `update_linkage`). // // The exception is foreign items, which have their linkage set inside the // call to `foreign::register_*` above. We don't touch the linkage after // that (`foreign::trans_foreign_mod` doesn't adjust the linkage like the // other item translation functions do). ccx.item_vals().borrow_mut().insert(id, val); val } fn register_method(ccx: &CrateContext, id: ast::NodeId, attrs: &[ast::Attribute], span: Span) -> ValueRef { let mty = ccx.tcx().node_id_to_type(id); let sym = exported_name(ccx, id, mty, &attrs); if let ty::TyBareFn(_, ref f) = mty.sty { let llfn = if f.abi == Rust || f.abi == RustCall { register_fn(ccx, span, sym, id, mty) } else { foreign::register_rust_fn_with_foreign_abi(ccx, span, sym, id) }; attributes::from_fn_attrs(ccx, &attrs, llfn); return llfn; } else { ccx.sess().span_bug(span, "expected bare rust function"); } } pub fn write_metadata<'a, 'tcx>(cx: &SharedCrateContext<'a, 'tcx>, krate: &hir::Crate, reachable: &NodeSet, mir_map: &MirMap<'tcx>) -> Vec { use flate; let any_library = cx.sess() .crate_types .borrow() .iter() .any(|ty| *ty != config::CrateTypeExecutable); if !any_library { return Vec::new(); } let cstore = &cx.tcx().sess.cstore; let metadata = cstore.encode_metadata(cx.tcx(), cx.export_map(), cx.item_symbols(), cx.link_meta(), reachable, mir_map, krate); let mut compressed = cstore.metadata_encoding_version().to_vec(); compressed.extend_from_slice(&flate::deflate_bytes(&metadata)); let llmeta = C_bytes_in_context(cx.metadata_llcx(), &compressed[..]); let llconst = C_struct_in_context(cx.metadata_llcx(), &[llmeta], false); let name = format!("rust_metadata_{}_{}", cx.link_meta().crate_name, cx.link_meta().crate_hash); let buf = CString::new(name).unwrap(); let llglobal = unsafe { llvm::LLVMAddGlobal(cx.metadata_llmod(), val_ty(llconst).to_ref(), buf.as_ptr()) }; unsafe { llvm::LLVMSetInitializer(llglobal, llconst); let name = cx.tcx().sess.cstore.metadata_section_name(&cx.sess().target.target); let name = CString::new(name).unwrap(); llvm::LLVMSetSection(llglobal, name.as_ptr()) } return metadata; } /// Find any symbols that are defined in one compilation unit, but not declared /// in any other compilation unit. Give these symbols internal linkage. fn internalize_symbols(cx: &SharedCrateContext, reachable: &HashSet<&str>) { unsafe { let mut declared = HashSet::new(); // Collect all external declarations in all compilation units. for ccx in cx.iter() { for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) { let linkage = llvm::LLVMGetLinkage(val); // We only care about external declarations (not definitions) // and available_externally definitions. if !(linkage == llvm::ExternalLinkage as c_uint && llvm::LLVMIsDeclaration(val) != 0) && !(linkage == llvm::AvailableExternallyLinkage as c_uint) { continue; } let name = CStr::from_ptr(llvm::LLVMGetValueName(val)) .to_bytes() .to_vec(); declared.insert(name); } } // Examine each external definition. If the definition is not used in // any other compilation unit, and is not reachable from other crates, // then give it internal linkage. for ccx in cx.iter() { for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) { // We only care about external definitions. if !(llvm::LLVMGetLinkage(val) == llvm::ExternalLinkage as c_uint && llvm::LLVMIsDeclaration(val) == 0) { continue; } let name = CStr::from_ptr(llvm::LLVMGetValueName(val)) .to_bytes() .to_vec(); if !declared.contains(&name) && !reachable.contains(str::from_utf8(&name).unwrap()) { llvm::SetLinkage(val, llvm::InternalLinkage); llvm::SetDLLStorageClass(val, llvm::DefaultStorageClass); } } } } } // Create a `__imp_ = &symbol` global for every public static `symbol`. // This is required to satisfy `dllimport` references to static data in .rlibs // when using MSVC linker. We do this only for data, as linker can fix up // code references on its own. // See #26591, #27438 fn create_imps(cx: &SharedCrateContext) { // The x86 ABI seems to require that leading underscores are added to symbol // names, so we need an extra underscore on 32-bit. There's also a leading // '\x01' here which disables LLVM's symbol mangling (e.g. no extra // underscores added in front). let prefix = if cx.sess().target.target.target_pointer_width == "32" { "\x01__imp__" } else { "\x01__imp_" }; unsafe { for ccx in cx.iter() { let exported: Vec<_> = iter_globals(ccx.llmod()) .filter(|&val| { llvm::LLVMGetLinkage(val) == llvm::ExternalLinkage as c_uint && llvm::LLVMIsDeclaration(val) == 0 }) .collect(); let i8p_ty = Type::i8p(&ccx); for val in exported { let name = CStr::from_ptr(llvm::LLVMGetValueName(val)); let mut imp_name = prefix.as_bytes().to_vec(); imp_name.extend(name.to_bytes()); let imp_name = CString::new(imp_name).unwrap(); let imp = llvm::LLVMAddGlobal(ccx.llmod(), i8p_ty.to_ref(), imp_name.as_ptr() as *const _); let init = llvm::LLVMConstBitCast(val, i8p_ty.to_ref()); llvm::LLVMSetInitializer(imp, init); llvm::SetLinkage(imp, llvm::ExternalLinkage); } } } } struct ValueIter { cur: ValueRef, step: unsafe extern "C" fn(ValueRef) -> ValueRef, } impl Iterator for ValueIter { type Item = ValueRef; fn next(&mut self) -> Option { let old = self.cur; if !old.is_null() { self.cur = unsafe { (self.step)(old) }; Some(old) } else { None } } } fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter { unsafe { ValueIter { cur: llvm::LLVMGetFirstGlobal(llmod), step: llvm::LLVMGetNextGlobal, } } } fn iter_functions(llmod: llvm::ModuleRef) -> ValueIter { unsafe { ValueIter { cur: llvm::LLVMGetFirstFunction(llmod), step: llvm::LLVMGetNextFunction, } } } /// The context provided lists a set of reachable ids as calculated by /// middle::reachable, but this contains far more ids and symbols than we're /// actually exposing from the object file. This function will filter the set in /// the context to the set of ids which correspond to symbols that are exposed /// from the object file being generated. /// /// This list is later used by linkers to determine the set of symbols needed to /// be exposed from a dynamic library and it's also encoded into the metadata. pub fn filter_reachable_ids(ccx: &SharedCrateContext) -> NodeSet { ccx.reachable().iter().map(|x| *x).filter(|id| { // First, only worry about nodes which have a symbol name ccx.item_symbols().borrow().contains_key(id) }).filter(|&id| { // Next, we want to ignore some FFI functions that are not exposed from // this crate. Reachable FFI functions can be lumped into two // categories: // // 1. Those that are included statically via a static library // 2. Those included otherwise (e.g. dynamically or via a framework) // // Although our LLVM module is not literally emitting code for the // statically included symbols, it's an export of our library which // needs to be passed on to the linker and encoded in the metadata. // // As a result, if this id is an FFI item (foreign item) then we only // let it through if it's included statically. match ccx.tcx().map.get(id) { hir_map::NodeForeignItem(..) => { ccx.sess().cstore.is_statically_included_foreign_item(id) } _ => true, } }).collect() } pub fn trans_crate<'tcx>(tcx: &ty::ctxt<'tcx>, mir_map: &MirMap<'tcx>, analysis: ty::CrateAnalysis) -> CrateTranslation { let ty::CrateAnalysis { export_map, reachable, name, .. } = analysis; let krate = tcx.map.krate(); let check_overflow = if let Some(v) = tcx.sess.opts.debugging_opts.force_overflow_checks { v } else { tcx.sess.opts.debug_assertions }; let check_dropflag = if let Some(v) = tcx.sess.opts.debugging_opts.force_dropflag_checks { v } else { tcx.sess.opts.debug_assertions }; // Before we touch LLVM, make sure that multithreading is enabled. unsafe { use std::sync::Once; static INIT: Once = Once::new(); static mut POISONED: bool = false; INIT.call_once(|| { if llvm::LLVMStartMultithreaded() != 1 { // use an extra bool to make sure that all future usage of LLVM // cannot proceed despite the Once not running more than once. POISONED = true; } ::back::write::configure_llvm(&tcx.sess); }); if POISONED { tcx.sess.bug("couldn't enable multi-threaded LLVM"); } } let link_meta = link::build_link_meta(&tcx.sess, krate, name); let codegen_units = tcx.sess.opts.cg.codegen_units; let shared_ccx = SharedCrateContext::new(&link_meta.crate_name, codegen_units, tcx, &mir_map, export_map, Sha256::new(), link_meta.clone(), reachable, check_overflow, check_dropflag); { let ccx = shared_ccx.get_ccx(0); // First, verify intrinsics. intrinsic::check_intrinsics(&ccx); // Next, translate all items. See `TransModVisitor` for // details on why we walk in this particular way. { let _icx = push_ctxt("text"); intravisit::walk_mod(&mut TransItemsWithinModVisitor { ccx: &ccx }, &krate.module); krate.visit_all_items(&mut TransModVisitor { ccx: &ccx }); } } for ccx in shared_ccx.iter() { if ccx.sess().opts.debuginfo != NoDebugInfo { debuginfo::finalize(&ccx); } for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() { unsafe { let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g)); llvm::LLVMReplaceAllUsesWith(old_g, bitcast); llvm::LLVMDeleteGlobal(old_g); } } } let reachable_symbol_ids = filter_reachable_ids(&shared_ccx); // Translate the metadata. let metadata = write_metadata(&shared_ccx, krate, &reachable_symbol_ids, mir_map); if shared_ccx.sess().trans_stats() { let stats = shared_ccx.stats(); println!("--- trans stats ---"); println!("n_glues_created: {}", stats.n_glues_created.get()); println!("n_null_glues: {}", stats.n_null_glues.get()); println!("n_real_glues: {}", stats.n_real_glues.get()); println!("n_fns: {}", stats.n_fns.get()); println!("n_monos: {}", stats.n_monos.get()); println!("n_inlines: {}", stats.n_inlines.get()); println!("n_closures: {}", stats.n_closures.get()); println!("fn stats:"); stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| { insns_b.cmp(&insns_a) }); for tuple in stats.fn_stats.borrow().iter() { match *tuple { (ref name, insns) => { println!("{} insns, {}", insns, *name); } } } } if shared_ccx.sess().count_llvm_insns() { for (k, v) in shared_ccx.stats().llvm_insns.borrow().iter() { println!("{:7} {}", *v, *k); } } let modules = shared_ccx.iter() .map(|ccx| ModuleTranslation { llcx: ccx.llcx(), llmod: ccx.llmod() }) .collect(); let sess = shared_ccx.sess(); let mut reachable_symbols = reachable_symbol_ids.iter().map(|id| { shared_ccx.item_symbols().borrow()[id].to_string() }).collect::>(); if sess.entry_fn.borrow().is_some() { reachable_symbols.push("main".to_string()); } // For the purposes of LTO, we add to the reachable set all of the upstream // reachable extern fns. These functions are all part of the public ABI of // the final product, so LTO needs to preserve them. if sess.lto() { for cnum in sess.cstore.crates() { let syms = sess.cstore.reachable_ids(cnum); reachable_symbols.extend(syms.into_iter().filter(|did| { sess.cstore.is_extern_fn(shared_ccx.tcx(), *did) || sess.cstore.is_static(*did) }).map(|did| { sess.cstore.item_symbol(did) })); } } if codegen_units > 1 { internalize_symbols(&shared_ccx, &reachable_symbols.iter().map(|x| &x[..]).collect()); } if sess.target.target.options.is_like_msvc && sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib) { create_imps(&shared_ccx); } let metadata_module = ModuleTranslation { llcx: shared_ccx.metadata_llcx(), llmod: shared_ccx.metadata_llmod(), }; let no_builtins = attr::contains_name(&krate.attrs, "no_builtins"); CrateTranslation { modules: modules, metadata_module: metadata_module, link: link_meta, metadata: metadata, reachable: reachable_symbols, no_builtins: no_builtins, } } /// We visit all the items in the krate and translate them. We do /// this in two walks. The first walk just finds module items. It then /// walks the full contents of those module items and translates all /// the items within. Note that this entire process is O(n). The /// reason for this two phased walk is that each module is /// (potentially) placed into a distinct codegen-unit. This walk also /// ensures that the immediate contents of each module is processed /// entirely before we proceed to find more modules, helping to ensure /// an equitable distribution amongst codegen-units. pub struct TransModVisitor<'a, 'tcx: 'a> { pub ccx: &'a CrateContext<'a, 'tcx>, } impl<'a, 'tcx, 'v> Visitor<'v> for TransModVisitor<'a, 'tcx> { fn visit_item(&mut self, i: &hir::Item) { match i.node { hir::ItemMod(_) => { let item_ccx = self.ccx.rotate(); intravisit::walk_item(&mut TransItemsWithinModVisitor { ccx: &item_ccx }, i); } _ => { } } } } /// Translates all the items within a given module. Expects owner to /// invoke `walk_item` on a module item. Ignores nested modules. pub struct TransItemsWithinModVisitor<'a, 'tcx: 'a> { pub ccx: &'a CrateContext<'a, 'tcx>, } impl<'a, 'tcx, 'v> Visitor<'v> for TransItemsWithinModVisitor<'a, 'tcx> { fn visit_nested_item(&mut self, item_id: hir::ItemId) { self.visit_item(self.ccx.tcx().map.expect_item(item_id.id)); } fn visit_item(&mut self, i: &hir::Item) { match i.node { hir::ItemMod(..) => { // skip modules, they will be uncovered by the TransModVisitor } _ => { trans_item(self.ccx, i); intravisit::walk_item(self, i); } } } }