// NB: transitionary, de-mode-ing. #[forbid(deprecated_mode)]; #[forbid(deprecated_pattern)]; //! Process spawning use option::{Some, None}; use libc::{pid_t, c_void, c_int}; use io::ReaderUtil; export Program; export run_program; export start_program; export program_output; export spawn_process; export waitpid; #[abi = "cdecl"] extern mod rustrt { fn rust_run_program(argv: **libc::c_char, envp: *c_void, dir: *libc::c_char, in_fd: c_int, out_fd: c_int, err_fd: c_int) -> pid_t; } /// A value representing a child process trait Program { /// Returns the process id of the program fn get_id() -> pid_t; /// Returns an io::writer that can be used to write to stdin fn input() -> io::Writer; /// Returns an io::reader that can be used to read from stdout fn output() -> io::Reader; /// Returns an io::reader that can be used to read from stderr fn err() -> io::Reader; /// Closes the handle to the child processes standard input fn close_input(); /** * Waits for the child process to terminate. Closes the handle * to stdin if necessary. */ fn finish() -> int; /// Closes open handles fn destroy(); } /** * Run a program, providing stdin, stdout and stderr handles * * # Arguments * * * prog - The path to an executable * * args - Vector of arguments to pass to the child process * * env - optional env-modification for child * * dir - optional dir to run child in (default current dir) * * in_fd - A file descriptor for the child to use as std input * * out_fd - A file descriptor for the child to use as std output * * err_fd - A file descriptor for the child to use as std error * * # Return value * * The process id of the spawned process */ fn spawn_process(prog: &str, args: &[~str], env: &Option<~[(~str,~str)]>, dir: &Option<~str>, in_fd: c_int, out_fd: c_int, err_fd: c_int) -> pid_t { do with_argv(prog, args) |argv| { do with_envp(env) |envp| { do with_dirp(dir) |dirp| { rustrt::rust_run_program(argv, envp, dirp, in_fd, out_fd, err_fd) } } } } fn with_argv(prog: &str, args: &[~str], cb: fn(**libc::c_char) -> T) -> T { let mut argptrs = str::as_c_str(prog, |b| ~[b]); let mut tmps = ~[]; for vec::each(args) |arg| { let t = @copy arg; vec::push(tmps, t); vec::push_all(argptrs, str::as_c_str(*t, |b| ~[b])); } vec::push(argptrs, ptr::null()); vec::as_buf(argptrs, |buf, _len| cb(buf)) } #[cfg(unix)] fn with_envp(env: &Option<~[(~str,~str)]>, cb: fn(*c_void) -> T) -> T { // On posixy systems we can pass a char** for envp, which is // a null-terminated array of "k=v\n" strings. match *env { Some(es) if !vec::is_empty(es) => { let mut tmps = ~[]; let mut ptrs = ~[]; for vec::each(es) |e| { let (k,v) = copy e; let t = @(fmt!("%s=%s", k, v)); vec::push(tmps, t); vec::push_all(ptrs, str::as_c_str(*t, |b| ~[b])); } vec::push(ptrs, ptr::null()); vec::as_buf(ptrs, |p, _len| unsafe { cb(::unsafe::reinterpret_cast(&p)) } ) } _ => cb(ptr::null()) } } #[cfg(windows)] fn with_envp(env: &Option<~[(~str,~str)]>, cb: fn(*c_void) -> T) -> T { // On win32 we pass an "environment block" which is not a char**, but // rather a concatenation of null-terminated k=v\0 sequences, with a final // \0 to terminate. unsafe { match *env { Some(es) if !vec::is_empty(es) => { let mut blk : ~[u8] = ~[]; for vec::each(es) |e| { let (k,v) = e; let t = fmt!("%s=%s", k, v); let mut v : ~[u8] = ::unsafe::reinterpret_cast(&t); blk += v; ::unsafe::forget(v); } blk += ~[0_u8]; vec::as_buf(blk, |p, _len| cb(::unsafe::reinterpret_cast(&p))) } _ => cb(ptr::null()) } } } fn with_dirp(d: &Option<~str>, cb: fn(*libc::c_char) -> T) -> T { match *d { Some(dir) => str::as_c_str(dir, cb), None => cb(ptr::null()) } } /** * Spawns a process and waits for it to terminate * * # Arguments * * * prog - The path to an executable * * args - Vector of arguments to pass to the child process * * # Return value * * The process id */ fn run_program(prog: &str, args: &[~str]) -> int { let pid = spawn_process(prog, args, &None, &None, 0i32, 0i32, 0i32); if pid == -1 as pid_t { fail; } return waitpid(pid); } /** * Spawns a process and returns a program * * The returned value is a boxed class containing a object that can * be used for sending and receiving data over the standard file descriptors. * The class will ensure that file descriptors are closed properly. * * # Arguments * * * prog - The path to an executable * * args - Vector of arguments to pass to the child process * * # Return value * * A class with a field */ fn start_program(prog: &str, args: &[~str]) -> Program { let pipe_input = os::pipe(); let pipe_output = os::pipe(); let pipe_err = os::pipe(); let pid = spawn_process(prog, args, &None, &None, pipe_input.in, pipe_output.out, pipe_err.out); if pid == -1 as pid_t { fail; } libc::close(pipe_input.in); libc::close(pipe_output.out); libc::close(pipe_err.out); type ProgRepr = {pid: pid_t, mut in_fd: c_int, out_file: *libc::FILE, err_file: *libc::FILE, mut finished: bool}; fn close_repr_input(r: &ProgRepr) { let invalid_fd = -1i32; if r.in_fd != invalid_fd { libc::close(r.in_fd); r.in_fd = invalid_fd; } } fn finish_repr(r: &ProgRepr) -> int { if r.finished { return 0; } r.finished = true; close_repr_input(r); return waitpid(r.pid); } fn destroy_repr(r: &ProgRepr) { finish_repr(r); libc::fclose(r.out_file); libc::fclose(r.err_file); } struct ProgRes { r: ProgRepr, drop { destroy_repr(&self.r); } } fn ProgRes(+r: ProgRepr) -> ProgRes { ProgRes { r: r } } impl ProgRes: Program { fn get_id() -> pid_t { return self.r.pid; } fn input() -> io::Writer { io::fd_writer(self.r.in_fd, false) } fn output() -> io::Reader { io::FILE_reader(self.r.out_file, false) } fn err() -> io::Reader { io::FILE_reader(self.r.err_file, false) } fn close_input() { close_repr_input(&self.r); } fn finish() -> int { finish_repr(&self.r) } fn destroy() { destroy_repr(&self.r); } } let repr = {pid: pid, mut in_fd: pipe_input.out, out_file: os::fdopen(pipe_output.in), err_file: os::fdopen(pipe_err.in), mut finished: false}; return ProgRes(move repr) as Program; } fn read_all(rd: io::Reader) -> ~str { let mut buf = ~""; while !rd.eof() { let bytes = rd.read_bytes(4096u); buf += str::from_bytes(bytes); } return buf; } /** * Spawns a process, waits for it to exit, and returns the exit code, and * contents of stdout and stderr. * * # Arguments * * * prog - The path to an executable * * args - Vector of arguments to pass to the child process * * # Return value * * A record, {status: int, out: str, err: str} containing the exit code, * the contents of stdout and the contents of stderr. */ fn program_output(prog: &str, args: &[~str]) -> {status: int, out: ~str, err: ~str} { let pipe_in = os::pipe(); let pipe_out = os::pipe(); let pipe_err = os::pipe(); let pid = spawn_process(prog, args, &None, &None, pipe_in.in, pipe_out.out, pipe_err.out); os::close(pipe_in.in); os::close(pipe_out.out); os::close(pipe_err.out); if pid == -1i32 { os::close(pipe_in.out); os::close(pipe_out.in); os::close(pipe_err.in); fail; } os::close(pipe_in.out); // Spawn two entire schedulers to read both stdout and sterr // in parallel so we don't deadlock while blocking on one // or the other. FIXME (#2625): Surely there's a much more // clever way to do this. let p = comm::Port(); let ch = comm::Chan(p); do task::spawn_sched(task::SingleThreaded) { let errput = readclose(pipe_err.in); comm::send(ch, (2, errput)); }; do task::spawn_sched(task::SingleThreaded) { let output = readclose(pipe_out.in); comm::send(ch, (1, output)); }; let status = run::waitpid(pid); let mut errs = ~""; let mut outs = ~""; let mut count = 2; while count > 0 { let stream = comm::recv(p); match stream { (1, s) => { outs = copy s; } (2, s) => { errs = copy s; } (n, _) => { fail(fmt!("program_output received an unexpected file \ number: %u", n)); } }; count -= 1; }; return {status: status, out: outs, err: errs}; } fn writeclose(fd: c_int, s: &str) { import io::WriterUtil; error!("writeclose %d, %s", fd as int, s); let writer = io::fd_writer(fd, false); writer.write_str(s); os::close(fd); } fn readclose(fd: c_int) -> ~str { let file = os::fdopen(fd); let reader = io::FILE_reader(file, false); let mut buf = ~""; while !reader.eof() { let bytes = reader.read_bytes(4096u); buf += str::from_bytes(bytes); } os::fclose(file); return buf; } /// Waits for a process to exit and returns the exit code fn waitpid(pid: pid_t) -> int { return waitpid_os(pid); #[cfg(windows)] fn waitpid_os(pid: pid_t) -> int { os::waitpid(pid) as int } #[cfg(unix)] fn waitpid_os(pid: pid_t) -> int { #[cfg(target_os = "linux")] fn WIFEXITED(status: i32) -> bool { (status & 0xffi32) == 0i32 } #[cfg(target_os = "macos")] #[cfg(target_os = "freebsd")] fn WIFEXITED(status: i32) -> bool { (status & 0x7fi32) == 0i32 } #[cfg(target_os = "linux")] fn WEXITSTATUS(status: i32) -> i32 { (status >> 8i32) & 0xffi32 } #[cfg(target_os = "macos")] #[cfg(target_os = "freebsd")] fn WEXITSTATUS(status: i32) -> i32 { status >> 8i32 } let status = os::waitpid(pid); return if WIFEXITED(status) { WEXITSTATUS(status) as int } else { 1 }; } } #[cfg(test)] mod tests { import io::WriterUtil; // Regression test for memory leaks #[ignore(cfg(windows))] // FIXME (#2626) fn test_leaks() { run::run_program("echo", []); run::start_program("echo", []); run::program_output("echo", []); } #[test] fn test_pipes() { let pipe_in = os::pipe(); let pipe_out = os::pipe(); let pipe_err = os::pipe(); let pid = run::spawn_process( "cat", [], &None, &None, pipe_in.in, pipe_out.out, pipe_err.out); os::close(pipe_in.in); os::close(pipe_out.out); os::close(pipe_err.out); if pid == -1i32 { fail; } let expected = ~"test"; writeclose(pipe_in.out, expected); let actual = readclose(pipe_out.in); readclose(pipe_err.in); os::waitpid(pid); log(debug, expected); log(debug, actual); assert (expected == actual); } #[test] fn waitpid() { let pid = run::spawn_process("false", [], &None, &None, 0i32, 0i32, 0i32); let status = run::waitpid(pid); assert status == 1; } } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: