// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Trait Resolution. See doc.rs. pub use self::SelectionError::*; pub use self::FulfillmentErrorCode::*; pub use self::Vtable::*; pub use self::ObligationCauseCode::*; use middle::subst; use middle::ty::{mod, Ty}; use middle::infer::InferCtxt; use std::rc::Rc; use std::slice::Items; use syntax::ast; use syntax::codemap::{Span, DUMMY_SP}; pub use self::fulfill::{FulfillmentContext, RegionObligation}; pub use self::select::SelectionContext; pub use self::select::SelectionCache; pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch}; pub use self::select::{MethodMatchedData}; // intentionally don't export variants pub use self::util::elaborate_predicates; pub use self::util::supertraits; pub use self::util::Supertraits; pub use self::util::search_trait_and_supertraits_from_bound; pub use self::util::transitive_bounds; pub use self::util::trait_ref_for_builtin_bound; mod coherence; mod fulfill; mod select; mod util; /// An `Obligation` represents some trait reference (e.g. `int:Eq`) for /// which the vtable must be found. The process of finding a vtable is /// called "resolving" the `Obligation`. This process consists of /// either identifying an `impl` (e.g., `impl Eq for int`) that /// provides the required vtable, or else finding a bound that is in /// scope. The eventual result is usually a `Selection` (defined below). #[deriving(Clone)] pub struct Obligation<'tcx, T> { pub cause: ObligationCause<'tcx>, pub recursion_depth: uint, pub trait_ref: T, } pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>; pub type TraitObligation<'tcx> = Obligation<'tcx, Rc>>; /// Why did we incur this obligation? Used for error reporting. #[deriving(Copy, Clone)] pub struct ObligationCause<'tcx> { pub span: Span, // The id of the fn body that triggered this obligation. This is // used for region obligations to determine the precise // environment in which the region obligation should be evaluated // (in particular, closures can add new assumptions). See the // field `region_obligations` of the `FulfillmentContext` for more // information. pub body_id: ast::NodeId, pub code: ObligationCauseCode<'tcx> } #[deriving(Copy, Clone)] pub enum ObligationCauseCode<'tcx> { /// Not well classified or should be obvious from span. MiscObligation, /// In an impl of trait X for type Y, type Y must /// also implement all supertraits of X. ItemObligation(ast::DefId), /// Obligation incurred due to an object cast. ObjectCastObligation(/* Object type */ Ty<'tcx>), /// To implement drop, type must be sendable. DropTrait, /// Various cases where expressions must be sized/copy/etc: AssignmentLhsSized, // L = X implies that L is Sized StructInitializerSized, // S { ... } must be Sized VariableType(ast::NodeId), // Type of each variable must be Sized ReturnType, // Return type must be Sized RepeatVec, // [T,..n] --> T must be Copy // Captures of variable the given id by a closure (span is the // span of the closure) ClosureCapture(ast::NodeId, Span, ty::BuiltinBound), // Types of fields (other than the last) in a struct must be sized. FieldSized, // Only Sized types can be made into objects ObjectSized, } pub type Obligations<'tcx, O> = subst::VecPerParamSpace>; pub type PredicateObligations<'tcx> = subst::VecPerParamSpace>; pub type TraitObligations<'tcx> = subst::VecPerParamSpace>; pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>; #[deriving(Clone,Show)] pub enum SelectionError<'tcx> { Unimplemented, Overflow, OutputTypeParameterMismatch(Rc>, Rc>, ty::type_err<'tcx>), } pub struct FulfillmentError<'tcx> { pub obligation: PredicateObligation<'tcx>, pub code: FulfillmentErrorCode<'tcx> } #[deriving(Clone)] pub enum FulfillmentErrorCode<'tcx> { CodeSelectionError(SelectionError<'tcx>), CodeAmbiguity, } /// When performing resolution, it is typically the case that there /// can be one of three outcomes: /// /// - `Ok(Some(r))`: success occurred with result `r` /// - `Ok(None)`: could not definitely determine anything, usually due /// to inconclusive type inference. /// - `Err(e)`: error `e` occurred pub type SelectionResult<'tcx, T> = Result, SelectionError<'tcx>>; /// Given the successful resolution of an obligation, the `Vtable` /// indicates where the vtable comes from. Note that while we call this /// a "vtable", it does not necessarily indicate dynamic dispatch at /// runtime. `Vtable` instances just tell the compiler where to find /// methods, but in generic code those methods are typically statically /// dispatched -- only when an object is constructed is a `Vtable` /// instance reified into an actual vtable. /// /// For example, the vtable may be tied to a specific impl (case A), /// or it may be relative to some bound that is in scope (case B). /// /// /// ``` /// impl Clone for Option { ... } // Impl_1 /// impl Clone for Box { ... } // Impl_2 /// impl Clone for int { ... } // Impl_3 /// /// fn foo(concrete: Option>, /// param: T, /// mixed: Option) { /// /// // Case A: Vtable points at a specific impl. Only possible when /// // type is concretely known. If the impl itself has bounded /// // type parameters, Vtable will carry resolutions for those as well: /// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])]) /// /// // Case B: Vtable must be provided by caller. This applies when /// // type is a type parameter. /// param.clone(); // VtableParam(Oblig_1) /// /// // Case C: A mix of cases A and B. /// mixed.clone(); // Vtable(Impl_1, [VtableParam(Oblig_1)]) /// } /// ``` /// /// ### The type parameter `N` /// /// See explanation on `VtableImplData`. #[deriving(Show,Clone)] pub enum Vtable<'tcx, N> { /// Vtable identifying a particular impl. VtableImpl(VtableImplData<'tcx, N>), /// Successful resolution to an obligation provided by the caller /// for some type parameter. VtableParam(VtableParamData<'tcx>), /// Successful resolution for a builtin trait. VtableBuiltin(VtableBuiltinData), /// Vtable automatically generated for an unboxed closure. The def /// ID is the ID of the closure expression. This is a `VtableImpl` /// in spirit, but the impl is generated by the compiler and does /// not appear in the source. VtableUnboxedClosure(ast::DefId, subst::Substs<'tcx>), /// Same as above, but for a fn pointer type with the given signature. VtableFnPointer(ty::Ty<'tcx>), } /// Identifies a particular impl in the source, along with a set of /// substitutions from the impl's type/lifetime parameters. The /// `nested` vector corresponds to the nested obligations attached to /// the impl's type parameters. /// /// The type parameter `N` indicates the type used for "nested /// obligations" that are required by the impl. During type check, this /// is `Obligation`, as one might expect. During trans, however, this /// is `()`, because trans only requires a shallow resolution of an /// impl, and nested obligations are satisfied later. #[deriving(Clone)] pub struct VtableImplData<'tcx, N> { pub impl_def_id: ast::DefId, pub substs: subst::Substs<'tcx>, pub nested: subst::VecPerParamSpace } #[deriving(Show,Clone)] pub struct VtableBuiltinData { pub nested: subst::VecPerParamSpace } /// A vtable provided as a parameter by the caller. For example, in a /// function like `fn foo(...)`, if the `eq()` method is invoked /// on an instance of `T`, the vtable would be of type `VtableParam`. #[deriving(PartialEq,Eq,Clone)] pub struct VtableParamData<'tcx> { // In the above example, this would `Eq` pub bound: Rc>, } /// True if neither the trait nor self type is local. Note that `impl_def_id` must refer to an impl /// of a trait, not an inherent impl. pub fn is_orphan_impl(tcx: &ty::ctxt, impl_def_id: ast::DefId) -> bool { !coherence::impl_is_local(tcx, impl_def_id) } /// True if there exist types that satisfy both of the two given impls. pub fn overlapping_impls(infcx: &InferCtxt, impl1_def_id: ast::DefId, impl2_def_id: ast::DefId) -> bool { coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) && coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id) } /// Creates predicate obligations from the generic bounds. pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, generic_bounds: &ty::GenericBounds<'tcx>) -> PredicateObligations<'tcx> { util::predicates_for_generics(tcx, cause, 0, generic_bounds) } impl<'tcx,O> Obligation<'tcx,O> { pub fn new(cause: ObligationCause<'tcx>, trait_ref: O) -> Obligation<'tcx, O> { Obligation { cause: cause, recursion_depth: 0, trait_ref: trait_ref } } pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> { Obligation::new(ObligationCause::misc(span, body_id), trait_ref) } pub fn with

(&self, value: P) -> Obligation<'tcx,P> { Obligation { cause: self.cause.clone(), recursion_depth: self.recursion_depth, trait_ref: value } } } impl<'tcx> Obligation<'tcx,Rc>> { pub fn self_ty(&self) -> Ty<'tcx> { self.trait_ref.self_ty() } } impl<'tcx> ObligationCause<'tcx> { pub fn new(span: Span, body_id: ast::NodeId, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> { ObligationCause { span: span, body_id: body_id, code: code } } pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> { ObligationCause { span: span, body_id: body_id, code: MiscObligation } } pub fn dummy() -> ObligationCause<'tcx> { ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation } } } impl<'tcx, N> Vtable<'tcx, N> { pub fn iter_nested(&self) -> Items { match *self { VtableImpl(ref i) => i.iter_nested(), VtableFnPointer(..) => (&[]).iter(), VtableUnboxedClosure(..) => (&[]).iter(), VtableParam(_) => (&[]).iter(), VtableBuiltin(ref i) => i.iter_nested(), } } pub fn map_nested(&self, op: F) -> Vtable<'tcx, M> where F: FnMut(&N) -> M { match *self { VtableImpl(ref i) => VtableImpl(i.map_nested(op)), VtableFnPointer(ref sig) => VtableFnPointer((*sig).clone()), VtableUnboxedClosure(d, ref s) => VtableUnboxedClosure(d, s.clone()), VtableParam(ref p) => VtableParam((*p).clone()), VtableBuiltin(ref b) => VtableBuiltin(b.map_nested(op)), } } pub fn map_move_nested(self, op: |N| -> M) -> Vtable<'tcx, M> { match self { VtableImpl(i) => VtableImpl(i.map_move_nested(op)), VtableFnPointer(sig) => VtableFnPointer(sig), VtableUnboxedClosure(d, s) => VtableUnboxedClosure(d, s), VtableParam(p) => VtableParam(p), VtableBuiltin(no) => VtableBuiltin(no.map_move_nested(op)), } } } impl<'tcx, N> VtableImplData<'tcx, N> { pub fn iter_nested(&self) -> Items { self.nested.iter() } pub fn map_nested(&self, op: F) -> VtableImplData<'tcx, M> where F: FnMut(&N) -> M, { VtableImplData { impl_def_id: self.impl_def_id, substs: self.substs.clone(), nested: self.nested.map(op) } } pub fn map_move_nested(self, op: |N| -> M) -> VtableImplData<'tcx, M> { let VtableImplData { impl_def_id, substs, nested } = self; VtableImplData { impl_def_id: impl_def_id, substs: substs, nested: nested.map_move(op) } } } impl VtableBuiltinData { pub fn iter_nested(&self) -> Items { self.nested.iter() } pub fn map_nested(&self, op: F) -> VtableBuiltinData where F: FnMut(&N) -> M { VtableBuiltinData { nested: self.nested.map(op) } } pub fn map_move_nested(self, op: |N| -> M) -> VtableBuiltinData { VtableBuiltinData { nested: self.nested.map_move(op) } } } impl<'tcx> FulfillmentError<'tcx> { fn new(obligation: PredicateObligation<'tcx>, code: FulfillmentErrorCode<'tcx>) -> FulfillmentError<'tcx> { FulfillmentError { obligation: obligation, code: code } } pub fn is_overflow(&self) -> bool { match self.code { CodeAmbiguity => false, CodeSelectionError(Overflow) => true, CodeSelectionError(_) => false, } } }