// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] //! Validates all used crates and extern libraries and loads their metadata use cstore::{self, CStore, CrateSource, MetadataBlob}; use decoder; use loader::{self, CratePaths}; use rustc::hir::def_id::DefIndex; use rustc::hir::svh::Svh; use rustc::dep_graph::{DepGraph, DepNode}; use rustc::session::{config, Session}; use rustc::session::config::PanicStrategy; use rustc::session::search_paths::PathKind; use rustc::middle::cstore::{CrateStore, validate_crate_name, ExternCrate}; use rustc::util::nodemap::{FnvHashMap, FnvHashSet}; use rustc::hir::map as hir_map; use std::cell::{RefCell, Cell}; use std::path::PathBuf; use std::rc::Rc; use std::fs; use syntax::ast; use syntax::abi::Abi; use syntax::codemap; use syntax::parse; use syntax::attr; use syntax::parse::token::InternedString; use syntax::visit; use syntax_pos::{self, Span, mk_sp, Pos}; use log; struct LocalCrateReader<'a> { sess: &'a Session, cstore: &'a CStore, creader: CrateReader<'a>, krate: &'a ast::Crate, definitions: &'a hir_map::Definitions, } pub struct CrateReader<'a> { sess: &'a Session, cstore: &'a CStore, next_crate_num: ast::CrateNum, foreign_item_map: FnvHashMap>, local_crate_name: String, local_crate_config: ast::CrateConfig, } impl<'a> visit::Visitor for LocalCrateReader<'a> { fn visit_item(&mut self, a: &ast::Item) { self.process_item(a); visit::walk_item(self, a); } } fn dump_crates(cstore: &CStore) { info!("resolved crates:"); cstore.iter_crate_data_origins(|_, data, opt_source| { info!(" name: {}", data.name()); info!(" cnum: {}", data.cnum); info!(" hash: {}", data.hash()); info!(" reqd: {}", data.explicitly_linked.get()); opt_source.map(|cs| { let CrateSource { dylib, rlib, cnum: _ } = cs; dylib.map(|dl| info!(" dylib: {}", dl.0.display())); rlib.map(|rl| info!(" rlib: {}", rl.0.display())); }); }) } fn should_link(i: &ast::Item) -> bool { !attr::contains_name(&i.attrs, "no_link") } #[derive(Debug)] struct CrateInfo { ident: String, name: String, id: ast::NodeId, should_link: bool, } fn register_native_lib(sess: &Session, cstore: &CStore, span: Option, name: String, kind: cstore::NativeLibraryKind) { if name.is_empty() { match span { Some(span) => { struct_span_err!(sess, span, E0454, "#[link(name = \"\")] given with empty name") .span_label(span, &format!("empty name given")) .emit(); } None => { sess.err("empty library name given via `-l`"); } } return } let is_osx = sess.target.target.options.is_like_osx; if kind == cstore::NativeFramework && !is_osx { let msg = "native frameworks are only available on OSX targets"; match span { Some(span) => { span_err!(sess, span, E0455, "{}", msg) } None => sess.err(msg), } } cstore.add_used_library(name, kind); } // Extra info about a crate loaded for plugins or exported macros. struct ExtensionCrate { metadata: PMDSource, dylib: Option, target_only: bool, ident: String, name: String, span: Span, should_link: bool, } enum PMDSource { Registered(Rc), Owned(loader::Library), } impl PMDSource { pub fn as_slice<'a>(&'a self) -> &'a [u8] { match *self { PMDSource::Registered(ref cmd) => cmd.data(), PMDSource::Owned(ref lib) => lib.metadata.as_slice(), } } } enum LoadResult { Previous(ast::CrateNum), Loaded(loader::Library), } pub struct Macros { pub macro_rules: Vec, /// An array of pairs where the first element is the name of the custom /// derive (e.g. the trait being derived) and the second element is the /// index of the definition. pub custom_derive_registrar: Option, pub svh: Svh, pub dylib: Option, } impl<'a> CrateReader<'a> { pub fn new(sess: &'a Session, cstore: &'a CStore, local_crate_name: &str, local_crate_config: ast::CrateConfig) -> CrateReader<'a> { CrateReader { sess: sess, cstore: cstore, next_crate_num: cstore.next_crate_num(), foreign_item_map: FnvHashMap(), local_crate_name: local_crate_name.to_owned(), local_crate_config: local_crate_config, } } fn extract_crate_info(&self, i: &ast::Item) -> Option { match i.node { ast::ItemKind::ExternCrate(ref path_opt) => { debug!("resolving extern crate stmt. ident: {} path_opt: {:?}", i.ident, path_opt); let name = match *path_opt { Some(name) => { validate_crate_name(Some(self.sess), &name.as_str(), Some(i.span)); name.to_string() } None => i.ident.to_string(), }; Some(CrateInfo { ident: i.ident.to_string(), name: name, id: i.id, should_link: should_link(i), }) } _ => None } } fn existing_match(&self, name: &str, hash: Option<&Svh>, kind: PathKind) -> Option { let mut ret = None; self.cstore.iter_crate_data(|cnum, data| { if data.name != name { return } match hash { Some(hash) if *hash == data.hash() => { ret = Some(cnum); return } Some(..) => return, None => {} } // When the hash is None we're dealing with a top-level dependency // in which case we may have a specification on the command line for // this library. Even though an upstream library may have loaded // something of the same name, we have to make sure it was loaded // from the exact same location as well. // // We're also sure to compare *paths*, not actual byte slices. The // `source` stores paths which are normalized which may be different // from the strings on the command line. let source = self.cstore.used_crate_source(cnum); if let Some(locs) = self.sess.opts.externs.get(name) { let found = locs.iter().any(|l| { let l = fs::canonicalize(l).ok(); source.dylib.as_ref().map(|p| &p.0) == l.as_ref() || source.rlib.as_ref().map(|p| &p.0) == l.as_ref() }); if found { ret = Some(cnum); } return } // Alright, so we've gotten this far which means that `data` has the // right name, we don't have a hash, and we don't have a --extern // pointing for ourselves. We're still not quite yet done because we // have to make sure that this crate was found in the crate lookup // path (this is a top-level dependency) as we don't want to // implicitly load anything inside the dependency lookup path. let prev_kind = source.dylib.as_ref().or(source.rlib.as_ref()) .unwrap().1; if ret.is_none() && (prev_kind == kind || prev_kind == PathKind::All) { ret = Some(cnum); } }); return ret; } fn verify_no_symbol_conflicts(&self, span: Span, metadata: &MetadataBlob) { let disambiguator = decoder::get_crate_disambiguator(metadata.as_slice()); let crate_name = decoder::get_crate_name(metadata.as_slice()); // Check for (potential) conflicts with the local crate if self.local_crate_name == crate_name && self.sess.local_crate_disambiguator() == disambiguator { span_fatal!(self.sess, span, E0519, "the current crate is indistinguishable from one of its \ dependencies: it has the same crate-name `{}` and was \ compiled with the same `-C metadata` arguments. This \ will result in symbol conflicts between the two.", crate_name) } let svh = decoder::get_crate_hash(metadata.as_slice()); // Check for conflicts with any crate loaded so far self.cstore.iter_crate_data(|_, other| { if other.name() == crate_name && // same crate-name other.disambiguator() == disambiguator && // same crate-disambiguator other.hash() != svh { // but different SVH span_fatal!(self.sess, span, E0523, "found two different crates with name `{}` that are \ not distinguished by differing `-C metadata`. This \ will result in symbol conflicts between the two.", crate_name) } }); } fn register_crate(&mut self, root: &Option, ident: &str, name: &str, span: Span, lib: loader::Library, explicitly_linked: bool) -> (ast::CrateNum, Rc, cstore::CrateSource) { info!("register crate `extern crate {} as {}`", name, ident); self.verify_no_symbol_conflicts(span, &lib.metadata); // Claim this crate number and cache it let cnum = self.next_crate_num; self.next_crate_num += 1; // Stash paths for top-most crate locally if necessary. let crate_paths = if root.is_none() { Some(CratePaths { ident: ident.to_string(), dylib: lib.dylib.clone().map(|p| p.0), rlib: lib.rlib.clone().map(|p| p.0), }) } else { None }; // Maintain a reference to the top most crate. let root = if root.is_some() { root } else { &crate_paths }; let loader::Library { dylib, rlib, metadata } = lib; let cnum_map = self.resolve_crate_deps(root, metadata.as_slice(), cnum, span); let staged_api = self.is_staged_api(metadata.as_slice()); let cmeta = Rc::new(cstore::CrateMetadata { name: name.to_string(), extern_crate: Cell::new(None), index: decoder::load_index(metadata.as_slice()), xref_index: decoder::load_xrefs(metadata.as_slice()), key_map: decoder::load_key_map(metadata.as_slice()), data: metadata, cnum_map: RefCell::new(cnum_map), cnum: cnum, codemap_import_info: RefCell::new(vec![]), staged_api: staged_api, explicitly_linked: Cell::new(explicitly_linked), }); if decoder::get_derive_registrar_fn(cmeta.data.as_slice()).is_some() { self.sess.span_err(span, "crates of the `rustc-macro` crate type \ cannot be linked at runtime"); } let source = cstore::CrateSource { dylib: dylib, rlib: rlib, cnum: cnum, }; self.cstore.set_crate_data(cnum, cmeta.clone()); self.cstore.add_used_crate_source(source.clone()); (cnum, cmeta, source) } fn is_staged_api(&self, data: &[u8]) -> bool { let attrs = decoder::get_crate_attributes(data); for attr in &attrs { if attr.name() == "stable" || attr.name() == "unstable" { return true } } false } fn resolve_crate(&mut self, root: &Option, ident: &str, name: &str, hash: Option<&Svh>, span: Span, kind: PathKind, explicitly_linked: bool) -> (ast::CrateNum, Rc, cstore::CrateSource) { info!("resolving crate `extern crate {} as {}`", name, ident); let result = match self.existing_match(name, hash, kind) { Some(cnum) => LoadResult::Previous(cnum), None => { info!("falling back to a load"); let mut load_ctxt = loader::Context { sess: self.sess, span: span, ident: ident, crate_name: name, hash: hash.map(|a| &*a), filesearch: self.sess.target_filesearch(kind), target: &self.sess.target.target, triple: &self.sess.opts.target_triple, root: root, rejected_via_hash: vec!(), rejected_via_triple: vec!(), rejected_via_kind: vec!(), rejected_via_version: vec!(), should_match_name: true, }; match self.load(&mut load_ctxt) { Some(result) => result, None => load_ctxt.report_load_errs(), } } }; match result { LoadResult::Previous(cnum) => { let data = self.cstore.get_crate_data(cnum); if explicitly_linked && !data.explicitly_linked.get() { data.explicitly_linked.set(explicitly_linked); } (cnum, data, self.cstore.used_crate_source(cnum)) } LoadResult::Loaded(library) => { self.register_crate(root, ident, name, span, library, explicitly_linked) } } } fn load(&mut self, loader: &mut loader::Context) -> Option { let library = match loader.maybe_load_library_crate() { Some(lib) => lib, None => return None, }; // In the case that we're loading a crate, but not matching // against a hash, we could load a crate which has the same hash // as an already loaded crate. If this is the case prevent // duplicates by just using the first crate. // // Note that we only do this for target triple crates, though, as we // don't want to match a host crate against an equivalent target one // already loaded. if loader.triple == self.sess.opts.target_triple { let meta_hash = decoder::get_crate_hash(library.metadata.as_slice()); let meta_name = decoder::get_crate_name(library.metadata.as_slice()) .to_string(); let mut result = LoadResult::Loaded(library); self.cstore.iter_crate_data(|cnum, data| { if data.name() == meta_name && meta_hash == data.hash() { assert!(loader.hash.is_none()); info!("load success, going to previous cnum: {}", cnum); result = LoadResult::Previous(cnum); } }); Some(result) } else { Some(LoadResult::Loaded(library)) } } fn update_extern_crate(&mut self, cnum: ast::CrateNum, mut extern_crate: ExternCrate, visited: &mut FnvHashSet<(ast::CrateNum, bool)>) { if !visited.insert((cnum, extern_crate.direct)) { return } let cmeta = self.cstore.get_crate_data(cnum); let old_extern_crate = cmeta.extern_crate.get(); // Prefer: // - something over nothing (tuple.0); // - direct extern crate to indirect (tuple.1); // - shorter paths to longer (tuple.2). let new_rank = (true, extern_crate.direct, !extern_crate.path_len); let old_rank = match old_extern_crate { None => (false, false, !0), Some(ref c) => (true, c.direct, !c.path_len), }; if old_rank >= new_rank { return; // no change needed } cmeta.extern_crate.set(Some(extern_crate)); // Propagate the extern crate info to dependencies. extern_crate.direct = false; for &dep_cnum in cmeta.cnum_map.borrow().iter() { self.update_extern_crate(dep_cnum, extern_crate, visited); } } // Go through the crate metadata and load any crates that it references fn resolve_crate_deps(&mut self, root: &Option, cdata: &[u8], krate: ast::CrateNum, span: Span) -> cstore::CrateNumMap { debug!("resolving deps of external crate"); // The map from crate numbers in the crate we're resolving to local crate // numbers let map: FnvHashMap<_, _> = decoder::get_crate_deps(cdata).iter().map(|dep| { debug!("resolving dep crate {} hash: `{}`", dep.name, dep.hash); let (local_cnum, ..) = self.resolve_crate(root, &dep.name, &dep.name, Some(&dep.hash), span, PathKind::Dependency, dep.explicitly_linked); (dep.cnum, local_cnum) }).collect(); let max_cnum = map.values().cloned().max().unwrap_or(0); // we map 0 and all other holes in the map to our parent crate. The "additional" // self-dependencies should be harmless. (0..max_cnum+1).map(|cnum| map.get(&cnum).cloned().unwrap_or(krate)).collect() } fn read_extension_crate(&mut self, span: Span, info: &CrateInfo) -> ExtensionCrate { info!("read extension crate {} `extern crate {} as {}` linked={}", info.id, info.name, info.ident, info.should_link); let target_triple = &self.sess.opts.target_triple[..]; let is_cross = target_triple != config::host_triple(); let mut should_link = info.should_link && !is_cross; let mut target_only = false; let ident = info.ident.clone(); let name = info.name.clone(); let mut load_ctxt = loader::Context { sess: self.sess, span: span, ident: &ident[..], crate_name: &name[..], hash: None, filesearch: self.sess.host_filesearch(PathKind::Crate), target: &self.sess.host, triple: config::host_triple(), root: &None, rejected_via_hash: vec!(), rejected_via_triple: vec!(), rejected_via_kind: vec!(), rejected_via_version: vec!(), should_match_name: true, }; let library = self.load(&mut load_ctxt).or_else(|| { if !is_cross { return None } // Try loading from target crates. This will abort later if we // try to load a plugin registrar function, target_only = true; should_link = info.should_link; load_ctxt.target = &self.sess.target.target; load_ctxt.triple = target_triple; load_ctxt.filesearch = self.sess.target_filesearch(PathKind::Crate); self.load(&mut load_ctxt) }); let library = match library { Some(l) => l, None => load_ctxt.report_load_errs(), }; let (dylib, metadata) = match library { LoadResult::Previous(cnum) => { let dylib = self.cstore.opt_used_crate_source(cnum).unwrap().dylib; let data = self.cstore.get_crate_data(cnum); (dylib, PMDSource::Registered(data)) } LoadResult::Loaded(library) => { let dylib = library.dylib.clone(); let metadata = PMDSource::Owned(library); (dylib, metadata) } }; ExtensionCrate { metadata: metadata, dylib: dylib.map(|p| p.0), target_only: target_only, name: info.name.to_string(), ident: info.ident.to_string(), span: span, should_link: should_link, } } pub fn read_macros(&mut self, item: &ast::Item) -> Macros { let ci = self.extract_crate_info(item).unwrap(); let ekrate = self.read_extension_crate(item.span, &ci); let source_name = format!("<{} macros>", item.ident); let mut ret = Macros { macro_rules: Vec::new(), custom_derive_registrar: None, svh: decoder::get_crate_hash(ekrate.metadata.as_slice()), dylib: None, }; decoder::each_exported_macro(ekrate.metadata.as_slice(), |name, attrs, span, body| { // NB: Don't use parse::parse_tts_from_source_str because it parses with // quote_depth > 0. let mut p = parse::new_parser_from_source_str(&self.sess.parse_sess, self.local_crate_config.clone(), source_name.clone(), body); let lo = p.span.lo; let body = match p.parse_all_token_trees() { Ok(body) => body, Err(mut err) => { err.emit(); self.sess.abort_if_errors(); unreachable!(); } }; let local_span = mk_sp(lo, p.last_span.hi); // Mark the attrs as used for attr in &attrs { attr::mark_used(attr); } ret.macro_rules.push(ast::MacroDef { ident: ast::Ident::with_empty_ctxt(name), attrs: attrs, id: ast::DUMMY_NODE_ID, span: local_span, imported_from: Some(item.ident), // overridden in plugin/load.rs export: false, use_locally: false, allow_internal_unstable: false, body: body, }); self.sess.imported_macro_spans.borrow_mut() .insert(local_span, (name.as_str().to_string(), span)); true }); match decoder::get_derive_registrar_fn(ekrate.metadata.as_slice()) { Some(id) => ret.custom_derive_registrar = Some(id), // If this crate is not a rustc-macro crate then we might be able to // register it with the local crate store to prevent loading the // metadata twice. // // If it's a rustc-macro crate, though, then we definitely don't // want to register it with the local crate store as we're just // going to use it as we would a plugin. None => { ekrate.register(self); return ret } } self.cstore.add_used_for_derive_macros(item); ret.dylib = ekrate.dylib.clone(); if ret.dylib.is_none() { span_bug!(item.span, "rustc-macro crate not dylib"); } if ekrate.target_only { let message = format!("rustc-macro crate is not available for \ triple `{}` (only found {})", config::host_triple(), self.sess.opts.target_triple); self.sess.span_fatal(item.span, &message); } return ret } /// Look for a plugin registrar. Returns library path, crate /// SVH and DefIndex of the registrar function. pub fn find_plugin_registrar(&mut self, span: Span, name: &str) -> Option<(PathBuf, Svh, DefIndex)> { let ekrate = self.read_extension_crate(span, &CrateInfo { name: name.to_string(), ident: name.to_string(), id: ast::DUMMY_NODE_ID, should_link: false, }); if ekrate.target_only { // Need to abort before syntax expansion. let message = format!("plugin `{}` is not available for triple `{}` \ (only found {})", name, config::host_triple(), self.sess.opts.target_triple); span_fatal!(self.sess, span, E0456, "{}", &message[..]); } let svh = decoder::get_crate_hash(ekrate.metadata.as_slice()); let registrar = decoder::get_plugin_registrar_fn(ekrate.metadata.as_slice()); match (ekrate.dylib.as_ref(), registrar) { (Some(dylib), Some(reg)) => { Some((dylib.to_path_buf(), svh, reg)) } (None, Some(_)) => { span_err!(self.sess, span, E0457, "plugin `{}` only found in rlib format, but must be available \ in dylib format", name); // No need to abort because the loading code will just ignore this // empty dylib. None } _ => None, } } fn register_statically_included_foreign_items(&mut self) { let libs = self.cstore.get_used_libraries(); for (lib, list) in self.foreign_item_map.iter() { let is_static = libs.borrow().iter().any(|&(ref name, kind)| { lib == name && kind == cstore::NativeStatic }); if is_static { for id in list { self.cstore.add_statically_included_foreign_item(*id); } } } } fn inject_panic_runtime(&mut self, krate: &ast::Crate) { // If we're only compiling an rlib, then there's no need to select a // panic runtime, so we just skip this section entirely. let any_non_rlib = self.sess.crate_types.borrow().iter().any(|ct| { *ct != config::CrateTypeRlib }); if !any_non_rlib { info!("panic runtime injection skipped, only generating rlib"); return } // If we need a panic runtime, we try to find an existing one here. At // the same time we perform some general validation of the DAG we've got // going such as ensuring everything has a compatible panic strategy. // // The logic for finding the panic runtime here is pretty much the same // as the allocator case with the only addition that the panic strategy // compilation mode also comes into play. let desired_strategy = self.sess.opts.cg.panic.clone(); let mut runtime_found = false; let mut needs_panic_runtime = attr::contains_name(&krate.attrs, "needs_panic_runtime"); self.cstore.iter_crate_data(|cnum, data| { needs_panic_runtime = needs_panic_runtime || data.needs_panic_runtime(); if data.is_panic_runtime() { // Inject a dependency from all #![needs_panic_runtime] to this // #![panic_runtime] crate. self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime()); runtime_found = runtime_found || data.explicitly_linked.get(); } }); // If an explicitly linked and matching panic runtime was found, or if // we just don't need one at all, then we're done here and there's // nothing else to do. if !needs_panic_runtime || runtime_found { return } // By this point we know that we (a) need a panic runtime and (b) no // panic runtime was explicitly linked. Here we just load an appropriate // default runtime for our panic strategy and then inject the // dependencies. // // We may resolve to an already loaded crate (as the crate may not have // been explicitly linked prior to this) and we may re-inject // dependencies again, but both of those situations are fine. // // Also note that we have yet to perform validation of the crate graph // in terms of everyone has a compatible panic runtime format, that's // performed later as part of the `dependency_format` module. let name = match desired_strategy { PanicStrategy::Unwind => "panic_unwind", PanicStrategy::Abort => "panic_abort", }; info!("panic runtime not found -- loading {}", name); let (cnum, data, _) = self.resolve_crate(&None, name, name, None, syntax_pos::DUMMY_SP, PathKind::Crate, false); // Sanity check the loaded crate to ensure it is indeed a panic runtime // and the panic strategy is indeed what we thought it was. if !data.is_panic_runtime() { self.sess.err(&format!("the crate `{}` is not a panic runtime", name)); } if data.panic_strategy() != desired_strategy { self.sess.err(&format!("the crate `{}` does not have the panic \ strategy `{}`", name, desired_strategy.desc())); } self.sess.injected_panic_runtime.set(Some(cnum)); self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime()); } fn inject_allocator_crate(&mut self) { // Make sure that we actually need an allocator, if none of our // dependencies need one then we definitely don't! // // Also, if one of our dependencies has an explicit allocator, then we // also bail out as we don't need to implicitly inject one. let mut needs_allocator = false; let mut found_required_allocator = false; self.cstore.iter_crate_data(|cnum, data| { needs_allocator = needs_allocator || data.needs_allocator(); if data.is_allocator() { info!("{} required by rlib and is an allocator", data.name()); self.inject_dependency_if(cnum, "an allocator", &|data| data.needs_allocator()); found_required_allocator = found_required_allocator || data.explicitly_linked.get(); } }); if !needs_allocator || found_required_allocator { return } // At this point we've determined that we need an allocator and no // previous allocator has been activated. We look through our outputs of // crate types to see what kind of allocator types we may need. // // The main special output type here is that rlibs do **not** need an // allocator linked in (they're just object files), only final products // (exes, dylibs, staticlibs) need allocators. let mut need_lib_alloc = false; let mut need_exe_alloc = false; for ct in self.sess.crate_types.borrow().iter() { match *ct { config::CrateTypeExecutable => need_exe_alloc = true, config::CrateTypeDylib | config::CrateTypeRustcMacro | config::CrateTypeCdylib | config::CrateTypeStaticlib => need_lib_alloc = true, config::CrateTypeRlib => {} } } if !need_lib_alloc && !need_exe_alloc { return } // The default allocator crate comes from the custom target spec, and we // choose between the standard library allocator or exe allocator. This // distinction exists because the default allocator for binaries (where // the world is Rust) is different than library (where the world is // likely *not* Rust). // // If a library is being produced, but we're also flagged with `-C // prefer-dynamic`, then we interpret this as a *Rust* dynamic library // is being produced so we use the exe allocator instead. // // What this boils down to is: // // * Binaries use jemalloc // * Staticlibs and Rust dylibs use system malloc // * Rust dylibs used as dependencies to rust use jemalloc let name = if need_lib_alloc && !self.sess.opts.cg.prefer_dynamic { &self.sess.target.target.options.lib_allocation_crate } else { &self.sess.target.target.options.exe_allocation_crate }; let (cnum, data, _) = self.resolve_crate(&None, name, name, None, syntax_pos::DUMMY_SP, PathKind::Crate, false); // Sanity check the crate we loaded to ensure that it is indeed an // allocator. if !data.is_allocator() { self.sess.err(&format!("the allocator crate `{}` is not tagged \ with #![allocator]", data.name())); } self.sess.injected_allocator.set(Some(cnum)); self.inject_dependency_if(cnum, "an allocator", &|data| data.needs_allocator()); } fn inject_dependency_if(&self, krate: ast::CrateNum, what: &str, needs_dep: &Fn(&cstore::CrateMetadata) -> bool) { // don't perform this validation if the session has errors, as one of // those errors may indicate a circular dependency which could cause // this to stack overflow. if self.sess.has_errors() { return } // Before we inject any dependencies, make sure we don't inject a // circular dependency by validating that this crate doesn't // transitively depend on any crates satisfying `needs_dep`. for dep in self.cstore.crate_dependencies_in_rpo(krate) { let data = self.cstore.get_crate_data(dep); if needs_dep(&data) { self.sess.err(&format!("the crate `{}` cannot depend \ on a crate that needs {}, but \ it depends on `{}`", self.cstore.get_crate_data(krate).name(), what, data.name())); } } // All crates satisfying `needs_dep` do not explicitly depend on the // crate provided for this compile, but in order for this compilation to // be successfully linked we need to inject a dependency (to order the // crates on the command line correctly). self.cstore.iter_crate_data(|cnum, data| { if !needs_dep(data) { return } info!("injecting a dep from {} to {}", cnum, krate); data.cnum_map.borrow_mut().push(krate); }); } } impl ExtensionCrate { fn register(self, creader: &mut CrateReader) { if !self.should_link { return } let library = match self.metadata { PMDSource::Owned(lib) => lib, PMDSource::Registered(_) => return, }; // Register crate now to avoid double-reading metadata creader.register_crate(&None, &self.ident, &self.name, self.span, library, true); } } impl<'a> LocalCrateReader<'a> { fn new(sess: &'a Session, cstore: &'a CStore, defs: &'a hir_map::Definitions, krate: &'a ast::Crate, local_crate_name: &str) -> LocalCrateReader<'a> { LocalCrateReader { sess: sess, cstore: cstore, creader: CrateReader::new(sess, cstore, local_crate_name, krate.config.clone()), krate: krate, definitions: defs, } } // Traverses an AST, reading all the information about use'd crates and // extern libraries necessary for later resolving, typechecking, linking, // etc. fn read_crates(&mut self, dep_graph: &DepGraph) { let _task = dep_graph.in_task(DepNode::CrateReader); self.process_crate(self.krate); visit::walk_crate(self, self.krate); self.creader.inject_allocator_crate(); self.creader.inject_panic_runtime(self.krate); if log_enabled!(log::INFO) { dump_crates(&self.cstore); } for &(ref name, kind) in &self.sess.opts.libs { register_native_lib(self.sess, self.cstore, None, name.clone(), kind); } self.creader.register_statically_included_foreign_items(); } fn process_crate(&self, c: &ast::Crate) { for a in c.attrs.iter().filter(|m| m.name() == "link_args") { if let Some(ref linkarg) = a.value_str() { self.cstore.add_used_link_args(&linkarg); } } } fn process_item(&mut self, i: &ast::Item) { match i.node { ast::ItemKind::ExternCrate(_) => { // If this `extern crate` item has `#[macro_use]` then we can // safely skip it. These annotations were processed during macro // expansion and are already loaded (if necessary) into our // crate store. // // Note that it's important we *don't* fall through below as // some `#[macro_use]` crate are explicitly not linked (e.g. // macro crates) so we want to ensure we avoid `resolve_crate` // with those. if attr::contains_name(&i.attrs, "macro_use") { if self.cstore.was_used_for_derive_macros(i) { return } } if let Some(info) = self.creader.extract_crate_info(i) { if !info.should_link { return; } let (cnum, ..) = self.creader.resolve_crate(&None, &info.ident, &info.name, None, i.span, PathKind::Crate, true); let def_id = self.definitions.opt_local_def_id(i.id).unwrap(); let len = self.definitions.def_path(def_id.index).data.len(); self.creader.update_extern_crate(cnum, ExternCrate { def_id: def_id, span: i.span, direct: true, path_len: len, }, &mut FnvHashSet()); self.cstore.add_extern_mod_stmt_cnum(info.id, cnum); } } ast::ItemKind::ForeignMod(ref fm) => self.process_foreign_mod(i, fm), _ => { } } } fn process_foreign_mod(&mut self, i: &ast::Item, fm: &ast::ForeignMod) { if fm.abi == Abi::Rust || fm.abi == Abi::RustIntrinsic || fm.abi == Abi::PlatformIntrinsic { return; } // First, add all of the custom #[link_args] attributes for m in i.attrs.iter().filter(|a| a.check_name("link_args")) { if let Some(linkarg) = m.value_str() { self.cstore.add_used_link_args(&linkarg); } } // Next, process all of the #[link(..)]-style arguments for m in i.attrs.iter().filter(|a| a.check_name("link")) { let items = match m.meta_item_list() { Some(item) => item, None => continue, }; let kind = items.iter().find(|k| { k.check_name("kind") }).and_then(|a| a.value_str()); let kind = match kind.as_ref().map(|s| &s[..]) { Some("static") => cstore::NativeStatic, Some("dylib") => cstore::NativeUnknown, Some("framework") => cstore::NativeFramework, Some(k) => { struct_span_err!(self.sess, m.span, E0458, "unknown kind: `{}`", k) .span_label(m.span, &format!("unknown kind")).emit(); cstore::NativeUnknown } None => cstore::NativeUnknown }; let n = items.iter().find(|n| { n.check_name("name") }).and_then(|a| a.value_str()); let n = match n { Some(n) => n, None => { struct_span_err!(self.sess, m.span, E0459, "#[link(...)] specified without `name = \"foo\"`") .span_label(m.span, &format!("missing `name` argument")).emit(); InternedString::new("foo") } }; register_native_lib(self.sess, self.cstore, Some(m.span), n.to_string(), kind); } // Finally, process the #[linked_from = "..."] attribute for m in i.attrs.iter().filter(|a| a.check_name("linked_from")) { let lib_name = match m.value_str() { Some(name) => name, None => continue, }; let list = self.creader.foreign_item_map.entry(lib_name.to_string()) .or_insert(Vec::new()); list.extend(fm.items.iter().map(|it| it.id)); } } } /// Traverses an AST, reading all the information about use'd crates and extern /// libraries necessary for later resolving, typechecking, linking, etc. pub fn read_local_crates(sess: & Session, cstore: & CStore, defs: & hir_map::Definitions, krate: & ast::Crate, local_crate_name: &str, dep_graph: &DepGraph) { LocalCrateReader::new(sess, cstore, defs, krate, local_crate_name).read_crates(dep_graph) } /// Imports the codemap from an external crate into the codemap of the crate /// currently being compiled (the "local crate"). /// /// The import algorithm works analogous to how AST items are inlined from an /// external crate's metadata: /// For every FileMap in the external codemap an 'inline' copy is created in the /// local codemap. The correspondence relation between external and local /// FileMaps is recorded in the `ImportedFileMap` objects returned from this /// function. When an item from an external crate is later inlined into this /// crate, this correspondence information is used to translate the span /// information of the inlined item so that it refers the correct positions in /// the local codemap (see `astencode::DecodeContext::tr_span()`). /// /// The import algorithm in the function below will reuse FileMaps already /// existing in the local codemap. For example, even if the FileMap of some /// source file of libstd gets imported many times, there will only ever be /// one FileMap object for the corresponding file in the local codemap. /// /// Note that imported FileMaps do not actually contain the source code of the /// file they represent, just information about length, line breaks, and /// multibyte characters. This information is enough to generate valid debuginfo /// for items inlined from other crates. pub fn import_codemap(local_codemap: &codemap::CodeMap, metadata: &MetadataBlob) -> Vec { let external_codemap = decoder::get_imported_filemaps(metadata.as_slice()); let imported_filemaps = external_codemap.into_iter().map(|filemap_to_import| { // Try to find an existing FileMap that can be reused for the filemap to // be imported. A FileMap is reusable if it is exactly the same, just // positioned at a different offset within the codemap. let reusable_filemap = { local_codemap.files .borrow() .iter() .find(|fm| are_equal_modulo_startpos(&fm, &filemap_to_import)) .map(|rc| rc.clone()) }; match reusable_filemap { Some(fm) => { cstore::ImportedFileMap { original_start_pos: filemap_to_import.start_pos, original_end_pos: filemap_to_import.end_pos, translated_filemap: fm } } None => { // We can't reuse an existing FileMap, so allocate a new one // containing the information we need. let syntax_pos::FileMap { name, abs_path, start_pos, end_pos, lines, multibyte_chars, .. } = filemap_to_import; let source_length = (end_pos - start_pos).to_usize(); // Translate line-start positions and multibyte character // position into frame of reference local to file. // `CodeMap::new_imported_filemap()` will then translate those // coordinates to their new global frame of reference when the // offset of the FileMap is known. let mut lines = lines.into_inner(); for pos in &mut lines { *pos = *pos - start_pos; } let mut multibyte_chars = multibyte_chars.into_inner(); for mbc in &mut multibyte_chars { mbc.pos = mbc.pos - start_pos; } let local_version = local_codemap.new_imported_filemap(name, abs_path, source_length, lines, multibyte_chars); cstore::ImportedFileMap { original_start_pos: start_pos, original_end_pos: end_pos, translated_filemap: local_version } } } }).collect(); return imported_filemaps; fn are_equal_modulo_startpos(fm1: &syntax_pos::FileMap, fm2: &syntax_pos::FileMap) -> bool { if fm1.name != fm2.name { return false; } let lines1 = fm1.lines.borrow(); let lines2 = fm2.lines.borrow(); if lines1.len() != lines2.len() { return false; } for (&line1, &line2) in lines1.iter().zip(lines2.iter()) { if (line1 - fm1.start_pos) != (line2 - fm2.start_pos) { return false; } } let multibytes1 = fm1.multibyte_chars.borrow(); let multibytes2 = fm2.multibyte_chars.borrow(); if multibytes1.len() != multibytes2.len() { return false; } for (mb1, mb2) in multibytes1.iter().zip(multibytes2.iter()) { if (mb1.bytes != mb2.bytes) || ((mb1.pos - fm1.start_pos) != (mb2.pos - fm2.start_pos)) { return false; } } true } }