// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Sendable hash maps. // NB: transitionary, de-mode-ing. #[forbid(deprecated_mode)]; #[forbid(deprecated_pattern)]; use container::{Container, Mutable, Map, Set}; use cmp::Eq; use hash::Hash; use to_bytes::IterBytes; /// Open addressing with linear probing. pub mod linear { use super::*; use iter::BaseIter; use hash::Hash; use iter; use kinds::Copy; use option::{None, Option, Some}; use option; use rand; use to_bytes::IterBytes; use uint; use vec; const INITIAL_CAPACITY: uint = 32u; // 2^5 struct Bucket { hash: uint, key: K, value: V, } pub struct LinearMap { k0: u64, k1: u64, resize_at: uint, size: uint, buckets: ~[Option>], } // FIXME(#3148) -- we could rewrite FoundEntry // to have type Option<&Bucket> which would be nifty // However, that won't work until #3148 is fixed enum SearchResult { FoundEntry(uint), FoundHole(uint), TableFull } pure fn resize_at(capacity: uint) -> uint { ((capacity as float) * 3. / 4.) as uint } pub fn linear_map_with_capacity( initial_capacity: uint) -> LinearMap { let r = rand::Rng(); linear_map_with_capacity_and_keys(r.gen_u64(), r.gen_u64(), initial_capacity) } pure fn linear_map_with_capacity_and_keys( k0: u64, k1: u64, initial_capacity: uint) -> LinearMap { LinearMap { k0: k0, k1: k1, resize_at: resize_at(initial_capacity), size: 0, buckets: vec::from_fn(initial_capacity, |_| None) } } priv impl LinearMap { #[inline(always)] pure fn to_bucket(&self, h: uint) -> uint { // FIXME(#3041) borrow a more sophisticated technique here from // Gecko, for example borrowing from Knuth, as Eich so // colorfully argues for here: // https://bugzilla.mozilla.org/show_bug.cgi?id=743107#c22 h % self.buckets.len() } #[inline(always)] pure fn next_bucket(&self, idx: uint, len_buckets: uint) -> uint { let n = (idx + 1) % len_buckets; debug!("next_bucket(%?, %?) = %?", idx, len_buckets, n); n } #[inline(always)] pure fn bucket_sequence(&self, hash: uint, op: fn(uint) -> bool) -> uint { let start_idx = self.to_bucket(hash); let len_buckets = self.buckets.len(); let mut idx = start_idx; loop { if !op(idx) { return idx; } idx = self.next_bucket(idx, len_buckets); if idx == start_idx { return start_idx; } } } #[inline(always)] pure fn bucket_for_key(&self, buckets: &[Option>], k: &K) -> SearchResult { let hash = k.hash_keyed(self.k0, self.k1) as uint; self.bucket_for_key_with_hash(buckets, hash, k) } #[inline(always)] pure fn bucket_for_key_with_hash(&self, buckets: &[Option>], hash: uint, k: &K) -> SearchResult { let _ = for self.bucket_sequence(hash) |i| { match buckets[i] { Some(ref bkt) => if bkt.hash == hash && *k == bkt.key { return FoundEntry(i); }, None => return FoundHole(i) } }; TableFull } /// Expands the capacity of the array and re-inserts each /// of the existing buckets. fn expand(&mut self) { let old_capacity = self.buckets.len(); let new_capacity = old_capacity * 2; self.resize_at = ((new_capacity as float) * 3.0 / 4.0) as uint; let mut old_buckets = vec::from_fn(new_capacity, |_| None); self.buckets <-> old_buckets; self.size = 0; for uint::range(0, old_capacity) |i| { let mut bucket = None; bucket <-> old_buckets[i]; self.insert_opt_bucket(bucket); } } fn insert_opt_bucket(&mut self, bucket: Option>) { match bucket { Some(Bucket{hash: hash, key: key, value: value}) => { self.insert_internal(hash, key, value); } None => {} } } /// Inserts the key value pair into the buckets. /// Assumes that there will be a bucket. /// True if there was no previous entry with that key fn insert_internal(&mut self, hash: uint, k: K, v: V) -> bool { match self.bucket_for_key_with_hash(self.buckets, hash, &k) { TableFull => { fail ~"Internal logic error"; } FoundHole(idx) => { debug!("insert fresh (%?->%?) at idx %?, hash %?", k, v, idx, hash); self.buckets[idx] = Some(Bucket{hash: hash, key: k, value: v}); self.size += 1; true } FoundEntry(idx) => { debug!("insert overwrite (%?->%?) at idx %?, hash %?", k, v, idx, hash); self.buckets[idx] = Some(Bucket{hash: hash, key: k, value: v}); false } } } fn pop_internal(&mut self, hash: uint, k: &K) -> Option { // Removing from an open-addressed hashtable // is, well, painful. The problem is that // the entry may lie on the probe path for other // entries, so removing it would make you think that // those probe paths are empty. // // To address this we basically have to keep walking, // re-inserting entries we find until we reach an empty // bucket. We know we will eventually reach one because // we insert one ourselves at the beginning (the removed // entry). // // I found this explanation elucidating: // http://www.maths.lse.ac.uk/Courses/MA407/del-hash.pdf let mut idx = match self.bucket_for_key_with_hash(self.buckets, hash, k) { TableFull | FoundHole(_) => return None, FoundEntry(idx) => idx }; let len_buckets = self.buckets.len(); let mut bucket = None; self.buckets[idx] <-> bucket; let value = match bucket { None => None, Some(bucket) => { let Bucket{value: value, _} = bucket; Some(value) }, }; /* re-inserting buckets may cause changes in size, so remember what our new size is ahead of time before we start insertions */ let size = self.size - 1; idx = self.next_bucket(idx, len_buckets); while self.buckets[idx].is_some() { let mut bucket = None; bucket <-> self.buckets[idx]; self.insert_opt_bucket(bucket); idx = self.next_bucket(idx, len_buckets); } self.size = size; value } fn search(&self, hash: uint, op: fn(x: &Option>) -> bool) { let _ = self.bucket_sequence(hash, |i| op(&self.buckets[i])); } } impl LinearMap: Container { /// Return the number of elements in the map pure fn len(&self) -> uint { self.size } /// Return true if the map contains no elements pure fn is_empty(&self) -> bool { self.len() == 0 } } impl LinearMap: Mutable { /// Clear the map, removing all key-value pairs. fn clear(&mut self) { for uint::range(0, self.buckets.len()) |idx| { self.buckets[idx] = None; } self.size = 0; } } impl LinearMap: Map { /// Return true if the map contains a value for the specified key pure fn contains_key(&self, k: &K) -> bool { match self.bucket_for_key(self.buckets, k) { FoundEntry(_) => {true} TableFull | FoundHole(_) => {false} } } /// Visit all key-value pairs pure fn each(&self, blk: fn(k: &K, v: &V) -> bool) { for self.buckets.each |slot| { let mut broke = false; do slot.iter |bucket| { if !blk(&bucket.key, &bucket.value) { broke = true; // FIXME(#3064) just write "break;" } } if broke { break; } } } /// Visit all keys pure fn each_key(&self, blk: fn(k: &K) -> bool) { self.each(|k, _| blk(k)) } /// Visit all values pure fn each_value(&self, blk: fn(v: &V) -> bool) { self.each(|_, v| blk(v)) } /// Return the value corresponding to the key in the map pure fn find(&self, k: &K) -> Option<&self/V> { match self.bucket_for_key(self.buckets, k) { FoundEntry(idx) => { match self.buckets[idx] { Some(ref bkt) => { // FIXME(#3148)---should be inferred let bkt: &self/Bucket = bkt; Some(&bkt.value) } None => { fail ~"LinearMap::find: internal logic error" } } } TableFull | FoundHole(_) => { None } } } /// Insert a key-value pair into the map. An existing value for a /// key is replaced by the new value. Return true if the key did /// not already exist in the map. fn insert(&mut self, k: K, v: V) -> bool { if self.size >= self.resize_at { // n.b.: We could also do this after searching, so // that we do not resize if this call to insert is // simply going to update a key in place. My sense // though is that it's worse to have to search through // buckets to find the right spot twice than to just // resize in this corner case. self.expand(); } let hash = k.hash_keyed(self.k0, self.k1) as uint; self.insert_internal(hash, k, v) } /// Remove a key-value pair from the map. Return true if the key /// was present in the map, otherwise false. fn remove(&mut self, k: &K) -> bool { self.pop(k).is_some() } } pub impl LinearMap { /// Create an empty LinearMap static fn new() -> LinearMap { linear_map_with_capacity(INITIAL_CAPACITY) } fn pop(&mut self, k: &K) -> Option { let hash = k.hash_keyed(self.k0, self.k1) as uint; self.pop_internal(hash, k) } fn swap(&mut self, k: K, v: V) -> Option { // this could be faster. let hash = k.hash_keyed(self.k0, self.k1) as uint; let old_value = self.pop_internal(hash, &k); if self.size >= self.resize_at { // n.b.: We could also do this after searching, so // that we do not resize if this call to insert is // simply going to update a key in place. My sense // though is that it's worse to have to search through // buckets to find the right spot twice than to just // resize in this corner case. self.expand(); } self.insert_internal(hash, k, v); old_value } fn consume(&mut self, f: fn(K, V)) { let mut buckets = ~[]; self.buckets <-> buckets; self.size = 0; do vec::consume(buckets) |_, bucket| { match bucket { None => {}, Some(bucket) => { let Bucket{key: key, value: value, _} = bucket; f(key, value) } } } } pure fn get(&self, k: &K) -> &self/V { match self.find(k) { Some(v) => v, None => fail fmt!("No entry found for key: %?", k), } } } impl LinearMap: Eq { pure fn eq(&self, other: &LinearMap) -> bool { if self.len() != other.len() { return false; } for self.each |key, value| { match other.find(key) { None => return false, Some(v) => if value != v { return false }, } } true } pure fn ne(&self, other: &LinearMap) -> bool { !self.eq(other) } } pub struct LinearSet { priv map: LinearMap } impl LinearSet: BaseIter { /// Visit all values in order pure fn each(&self, f: fn(&T) -> bool) { self.map.each_key(f) } pure fn size_hint(&self) -> Option { Some(self.len()) } } impl LinearSet: Eq { pure fn eq(&self, other: &LinearSet) -> bool { self.map == other.map } pure fn ne(&self, other: &LinearSet) -> bool { self.map != other.map } } impl LinearSet: Container { /// Return the number of elements in the set pure fn len(&self) -> uint { self.map.len() } /// Return true if the set contains no elements pure fn is_empty(&self) -> bool { self.map.is_empty() } } impl LinearSet: Mutable { /// Clear the set, removing all values. fn clear(&mut self) { self.map.clear() } } impl LinearSet: Set { /// Return true if the set contains a value pure fn contains(&self, value: &T) -> bool { self.map.contains_key(value) } /// Add a value to the set. Return true if the value was not already /// present in the set. fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()) } /// Remove a value from the set. Return true if the value was /// present in the set. fn remove(&mut self, value: &T) -> bool { self.map.remove(value) } /// Return true if the set has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. pure fn is_disjoint(&self, other: &LinearSet) -> bool { iter::all(self, |v| !other.contains(v)) } /// Return true if the set is a subset of another pure fn is_subset(&self, other: &LinearSet) -> bool { iter::all(self, |v| other.contains(v)) } /// Return true if the set is a superset of another pure fn is_superset(&self, other: &LinearSet) -> bool { other.is_subset(self) } /// Visit the values representing the difference pure fn difference(&self, other: &LinearSet, f: fn(&T) -> bool) { for self.each |v| { if !other.contains(v) { if !f(v) { return } } } } /// Visit the values representing the symmetric difference pure fn symmetric_difference(&self, other: &LinearSet, f: fn(&T) -> bool) { self.difference(other, f); other.difference(self, f); } /// Visit the values representing the intersection pure fn intersection(&self, other: &LinearSet, f: fn(&T) -> bool) { for self.each |v| { if other.contains(v) { if !f(v) { return } } } } /// Visit the values representing the union pure fn union(&self, other: &LinearSet, f: fn(&T) -> bool) { for self.each |v| { if !f(v) { return } } for other.each |v| { if !self.contains(v) { if !f(v) { return } } } } } pub impl LinearSet { /// Create an empty LinearSet static fn new() -> LinearSet { LinearSet{map: LinearMap::new()} } } } #[test] mod test_map { use container::{Container, Mutable, Map, Set}; use option::{None, Some}; use hashmap::linear::LinearMap; use hashmap::linear; use uint; #[test] pub fn inserts() { let mut m = LinearMap::new(); assert m.insert(1, 2); assert m.insert(2, 4); assert *m.get(&1) == 2; assert *m.get(&2) == 4; } #[test] pub fn overwrite() { let mut m = LinearMap::new(); assert m.insert(1, 2); assert *m.get(&1) == 2; assert !m.insert(1, 3); assert *m.get(&1) == 3; } #[test] pub fn conflicts() { let mut m = linear::linear_map_with_capacity(4); assert m.insert(1, 2); assert m.insert(5, 3); assert m.insert(9, 4); assert *m.get(&9) == 4; assert *m.get(&5) == 3; assert *m.get(&1) == 2; } #[test] pub fn conflict_remove() { let mut m = linear::linear_map_with_capacity(4); assert m.insert(1, 2); assert m.insert(5, 3); assert m.insert(9, 4); assert m.remove(&1); assert *m.get(&9) == 4; assert *m.get(&5) == 3; } #[test] pub fn empty() { let mut m = linear::linear_map_with_capacity(4); assert m.insert(1, 2); assert !m.is_empty(); assert m.remove(&1); assert m.is_empty(); } #[test] pub fn pops() { let mut m = LinearMap::new(); m.insert(1, 2); assert m.pop(&1) == Some(2); assert m.pop(&1) == None; } #[test] pub fn swaps() { let mut m = LinearMap::new(); assert m.swap(1, 2) == None; assert m.swap(1, 3) == Some(2); assert m.swap(1, 4) == Some(3); } #[test] pub fn consumes() { let mut m = LinearMap::new(); assert m.insert(1, 2); assert m.insert(2, 3); let mut m2 = LinearMap::new(); do m.consume |k, v| { m2.insert(k, v); } assert m.len() == 0; assert m2.len() == 2; assert m2.get(&1) == &2; assert m2.get(&2) == &3; } #[test] pub fn iterate() { let mut m = linear::linear_map_with_capacity(4); for uint::range(0, 32) |i| { assert m.insert(i, i*2); } let mut observed = 0; for m.each |k, v| { assert *v == *k * 2; observed |= (1 << *k); } assert observed == 0xFFFF_FFFF; } #[test] pub fn find() { let mut m = LinearMap::new(); assert m.find(&1).is_none(); m.insert(1, 2); match m.find(&1) { None => fail, Some(v) => assert *v == 2 } } #[test] pub fn test_eq() { let mut m1 = LinearMap::new(); m1.insert(1, 2); m1.insert(2, 3); m1.insert(3, 4); let mut m2 = LinearMap::new(); m2.insert(1, 2); m2.insert(2, 3); assert m1 != m2; m2.insert(3, 4); assert m1 == m2; } #[test] pub fn test_expand() { let mut m = LinearMap::new(); assert m.len() == 0; assert m.is_empty(); let mut i = 0u; let old_resize_at = m.resize_at; while old_resize_at == m.resize_at { m.insert(i, i); i += 1; } assert m.len() == i; assert !m.is_empty(); } } #[test] mod test_set { use super::*; #[test] fn test_disjoint() { let mut xs = linear::LinearSet::new(); let mut ys = linear::LinearSet::new(); assert xs.is_disjoint(&ys); assert ys.is_disjoint(&xs); assert xs.insert(5); assert ys.insert(11); assert xs.is_disjoint(&ys); assert ys.is_disjoint(&xs); assert xs.insert(7); assert xs.insert(19); assert xs.insert(4); assert ys.insert(2); assert ys.insert(-11); assert xs.is_disjoint(&ys); assert ys.is_disjoint(&xs); assert ys.insert(7); assert !xs.is_disjoint(&ys); assert !ys.is_disjoint(&xs); } #[test] fn test_subset_and_superset() { let mut a = linear::LinearSet::new(); assert a.insert(0); assert a.insert(5); assert a.insert(11); assert a.insert(7); let mut b = linear::LinearSet::new(); assert b.insert(0); assert b.insert(7); assert b.insert(19); assert b.insert(250); assert b.insert(11); assert b.insert(200); assert !a.is_subset(&b); assert !a.is_superset(&b); assert !b.is_subset(&a); assert !b.is_superset(&a); assert b.insert(5); assert a.is_subset(&b); assert !a.is_superset(&b); assert !b.is_subset(&a); assert b.is_superset(&a); } #[test] fn test_intersection() { let mut a = linear::LinearSet::new(); let mut b = linear::LinearSet::new(); assert a.insert(11); assert a.insert(1); assert a.insert(3); assert a.insert(77); assert a.insert(103); assert a.insert(5); assert a.insert(-5); assert b.insert(2); assert b.insert(11); assert b.insert(77); assert b.insert(-9); assert b.insert(-42); assert b.insert(5); assert b.insert(3); let mut i = 0; let expected = [3, 5, 11, 77]; for a.intersection(&b) |x| { assert vec::contains(expected, x); i += 1 } assert i == expected.len(); } #[test] fn test_difference() { let mut a = linear::LinearSet::new(); let mut b = linear::LinearSet::new(); assert a.insert(1); assert a.insert(3); assert a.insert(5); assert a.insert(9); assert a.insert(11); assert b.insert(3); assert b.insert(9); let mut i = 0; let expected = [1, 5, 11]; for a.difference(&b) |x| { assert vec::contains(expected, x); i += 1 } assert i == expected.len(); } #[test] fn test_symmetric_difference() { let mut a = linear::LinearSet::new(); let mut b = linear::LinearSet::new(); assert a.insert(1); assert a.insert(3); assert a.insert(5); assert a.insert(9); assert a.insert(11); assert b.insert(-2); assert b.insert(3); assert b.insert(9); assert b.insert(14); assert b.insert(22); let mut i = 0; let expected = [-2, 1, 5, 11, 14, 22]; for a.symmetric_difference(&b) |x| { assert vec::contains(expected, x); i += 1 } assert i == expected.len(); } #[test] fn test_union() { let mut a = linear::LinearSet::new(); let mut b = linear::LinearSet::new(); assert a.insert(1); assert a.insert(3); assert a.insert(5); assert a.insert(9); assert a.insert(11); assert a.insert(16); assert a.insert(19); assert a.insert(24); assert b.insert(-2); assert b.insert(1); assert b.insert(5); assert b.insert(9); assert b.insert(13); assert b.insert(19); let mut i = 0; let expected = [-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]; for a.union(&b) |x| { assert vec::contains(expected, x); i += 1 } assert i == expected.len(); } }