// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Earley-like parser for macros. use ast; use ast::{matcher, match_tok, match_seq, match_nonterminal, ident}; use codemap::{BytePos, mk_sp}; use codemap; use parse::lexer::*; //resolve bug? use parse::ParseSess; use parse::parser::Parser; use parse::token::{Token, EOF, to_str, nonterminal, get_ident_interner, ident_to_str}; use parse::token; use std::hashmap::HashMap; use std::uint; use std::vec; /* This is an Earley-like parser, without support for in-grammar nonterminals, only by calling out to the main rust parser for named nonterminals (which it commits to fully when it hits one in a grammar). This means that there are no completer or predictor rules, and therefore no need to store one column per token: instead, there's a set of current Earley items and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in pathological cases, is worse than traditional Earley parsing, but it's an easier fit for Macro-by-Example-style rules, and I think the overhead is lower. (In order to prevent the pathological case, we'd need to lazily construct the resulting `named_match`es at the very end. It'd be a pain, and require more memory to keep around old items, but it would also save overhead)*/ /* Quick intro to how the parser works: A 'position' is a dot in the middle of a matcher, usually represented as a dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`. The parser walks through the input a character at a time, maintaining a list of items consistent with the current position in the input string: `cur_eis`. As it processes them, it fills up `eof_eis` with items that would be valid if the macro invocation is now over, `bb_eis` with items that are waiting on a Rust nonterminal like `$e:expr`, and `next_eis` with items that are waiting on the a particular token. Most of the logic concerns moving the · through the repetitions indicated by Kleene stars. It only advances or calls out to the real Rust parser when no `cur_eis` items remain Example: Start parsing `a a a a b` against [· a $( a )* a b]. Remaining input: `a a a a b` next_eis: [· a $( a )* a b] - - - Advance over an `a`. - - - Remaining input: `a a a b` cur: [a · $( a )* a b] Descend/Skip (first item). next: [a $( · a )* a b] [a $( a )* · a b]. - - - Advance over an `a`. - - - Remaining input: `a a b` cur: [a $( a · )* a b] next: [a $( a )* a · b] Finish/Repeat (first item) next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] - - - Advance over an `a`. - - - (this looks exactly like the last step) Remaining input: `a b` cur: [a $( a · )* a b] next: [a $( a )* a · b] Finish/Repeat (first item) next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b] - - - Advance over an `a`. - - - (this looks exactly like the last step) Remaining input: `b` cur: [a $( a · )* a b] next: [a $( a )* a · b] Finish/Repeat (first item) next: [a $( a )* · a b] [a $( · a )* a b] - - - Advance over a `b`. - - - Remaining input: `` eof: [a $( a )* a b ·] */ /* to avoid costly uniqueness checks, we require that `match_seq` always has a nonempty body. */ #[deriving(Clone)] pub enum matcher_pos_up { /* to break a circularity */ matcher_pos_up(Option<~MatcherPos>) } pub fn is_some(mpu: &matcher_pos_up) -> bool { match *mpu { matcher_pos_up(None) => false, _ => true } } #[deriving(Clone)] pub struct MatcherPos { elts: ~[ast::matcher], // maybe should be <'>? Need to understand regions. sep: Option, idx: uint, up: matcher_pos_up, // mutable for swapping only matches: ~[~[@named_match]], match_lo: uint, match_hi: uint, sp_lo: BytePos, } pub fn copy_up(mpu: &matcher_pos_up) -> ~MatcherPos { match *mpu { matcher_pos_up(Some(ref mp)) => (*mp).clone(), _ => fail!() } } pub fn count_names(ms: &[matcher]) -> uint { do ms.iter().fold(0) |ct, m| { ct + match m.node { match_tok(_) => 0u, match_seq(ref more_ms, _, _, _, _) => count_names((*more_ms)), match_nonterminal(_,_,_) => 1u }} } pub fn initial_matcher_pos(ms: ~[matcher], sep: Option, lo: BytePos) -> ~MatcherPos { let mut match_idx_hi = 0u; for ms.iter().advance |elt| { match elt.node { match_tok(_) => (), match_seq(_,_,_,_,hi) => { match_idx_hi = hi; // it is monotonic... } match_nonterminal(_,_,pos) => { match_idx_hi = pos+1u; // ...so latest is highest } } } let matches = vec::from_fn(count_names(ms), |_i| ~[]); ~MatcherPos { elts: ms, sep: sep, idx: 0u, up: matcher_pos_up(None), matches: matches, match_lo: 0u, match_hi: match_idx_hi, sp_lo: lo } } // named_match is a pattern-match result for a single ast::match_nonterminal: // so it is associated with a single ident in a parse, and all // matched_nonterminals in the named_match have the same nonterminal type // (expr, item, etc). All the leaves in a single named_match correspond to a // single matcher_nonterminal in the ast::matcher that produced it. // // It should probably be renamed, it has more or less exact correspondence to // ast::match nodes, and the in-memory structure of a particular named_match // represents the match that occurred when a particular subset of an // ast::match -- those ast::matcher nodes leading to a single // match_nonterminal -- was applied to a particular token tree. // // The width of each matched_seq in the named_match, and the identity of the // matched_nonterminals, will depend on the token tree it was applied to: each // matched_seq corresponds to a single match_seq in the originating // ast::matcher. The depth of the named_match structure will therefore depend // only on the nesting depth of ast::match_seqs in the originating // ast::matcher it was derived from. pub enum named_match { matched_seq(~[@named_match], codemap::span), matched_nonterminal(nonterminal) } pub type earley_item = ~MatcherPos; pub fn nameize(p_s: @mut ParseSess, ms: &[matcher], res: &[@named_match]) -> HashMap { fn n_rec(p_s: @mut ParseSess, m: &matcher, res: &[@named_match], ret_val: &mut HashMap) { match *m { codemap::spanned {node: match_tok(_), _} => (), codemap::spanned {node: match_seq(ref more_ms, _, _, _, _), _} => { for more_ms.iter().advance |next_m| { n_rec(p_s, next_m, res, ret_val) }; } codemap::spanned { node: match_nonterminal(ref bind_name, _, idx), span: sp } => { if ret_val.contains_key(bind_name) { p_s.span_diagnostic.span_fatal(sp, ~"Duplicated bind name: "+ ident_to_str(bind_name)) } ret_val.insert(*bind_name, res[idx]); } } } let mut ret_val = HashMap::new(); for ms.iter().advance |m| { n_rec(p_s, m, res, &mut ret_val) } ret_val } pub enum parse_result { success(HashMap), failure(codemap::span, ~str), error(codemap::span, ~str) } pub fn parse_or_else( sess: @mut ParseSess, cfg: ast::crate_cfg, rdr: @reader, ms: ~[matcher] ) -> HashMap { match parse(sess, cfg, rdr, ms) { success(m) => m, failure(sp, str) => sess.span_diagnostic.span_fatal(sp, str), error(sp, str) => sess.span_diagnostic.span_fatal(sp, str) } } pub fn parse( sess: @mut ParseSess, cfg: ast::crate_cfg, rdr: @reader, ms: &[matcher] ) -> parse_result { let mut cur_eis = ~[]; cur_eis.push(initial_matcher_pos(ms.to_owned(), None, rdr.peek().sp.lo)); loop { let mut bb_eis = ~[]; // black-box parsed by parser.rs let mut next_eis = ~[]; // or proceed normally let mut eof_eis = ~[]; let TokenAndSpan {tok: tok, sp: sp} = rdr.peek(); /* we append new items to this while we go */ while !cur_eis.is_empty() { /* for each Earley Item */ let ei = cur_eis.pop(); let idx = ei.idx; let len = ei.elts.len(); /* at end of sequence */ if idx >= len { // can't move out of `match`es, so: if is_some(&ei.up) { // hack: a matcher sequence is repeating iff it has a // parent (the top level is just a container) // disregard separator, try to go up // (remove this condition to make trailing seps ok) if idx == len { // pop from the matcher position let mut new_pos = copy_up(&ei.up); // update matches (the MBE "parse tree") by appending // each tree as a subtree. // I bet this is a perf problem: we're preemptively // doing a lot of array work that will get thrown away // most of the time. // Only touch the binders we have actually bound for uint::range(ei.match_lo, ei.match_hi) |idx| { let sub = ei.matches[idx].clone(); new_pos.matches[idx] .push(@matched_seq(sub, mk_sp(ei.sp_lo, sp.hi))); } new_pos.idx += 1; cur_eis.push(new_pos); } // can we go around again? // the *_t vars are workarounds for the lack of unary move match ei.sep { Some(ref t) if idx == len => { // we need a separator if tok == (*t) { //pass the separator let mut ei_t = ei.clone(); ei_t.idx += 1; next_eis.push(ei_t); } } _ => { // we don't need a separator let mut ei_t = ei; ei_t.idx = 0; cur_eis.push(ei_t); } } } else { eof_eis.push(ei); } } else { match ei.elts[idx].node.clone() { /* need to descend into sequence */ match_seq(ref matchers, ref sep, zero_ok, match_idx_lo, match_idx_hi) => { if zero_ok { let mut new_ei = ei.clone(); new_ei.idx += 1u; //we specifically matched zero repeats. for uint::range(match_idx_lo, match_idx_hi) |idx| { new_ei.matches[idx].push(@matched_seq(~[], sp)); } cur_eis.push(new_ei); } let matches = vec::from_elem(ei.matches.len(), ~[]); let ei_t = ei; cur_eis.push(~MatcherPos { elts: (*matchers).clone(), sep: (*sep).clone(), idx: 0u, up: matcher_pos_up(Some(ei_t)), matches: matches, match_lo: match_idx_lo, match_hi: match_idx_hi, sp_lo: sp.lo }); } match_nonterminal(_,_,_) => { bb_eis.push(ei) } match_tok(ref t) => { let mut ei_t = ei.clone(); if (*t) == tok { ei_t.idx += 1; next_eis.push(ei_t); } } } } } /* error messages here could be improved with links to orig. rules */ if tok == EOF { if eof_eis.len() == 1u { let mut v = ~[]; for eof_eis[0u].matches.mut_iter().advance |dv| { v.push(dv.pop()); } return success(nameize(sess, ms, v)); } else if eof_eis.len() > 1u { return error(sp, ~"Ambiguity: multiple successful parses"); } else { return failure(sp, ~"Unexpected end of macro invocation"); } } else { if (bb_eis.len() > 0u && next_eis.len() > 0u) || bb_eis.len() > 1u { let nts = bb_eis.map(|ei| { match ei.elts[ei.idx].node { match_nonterminal(ref bind,ref name,_) => { fmt!("%s ('%s')", ident_to_str(name), ident_to_str(bind)) } _ => fail!() } }).connect(" or "); return error(sp, fmt!( "Local ambiguity: multiple parsing options: \ built-in NTs %s or %u other options.", nts, next_eis.len())); } else if (bb_eis.len() == 0u && next_eis.len() == 0u) { return failure(sp, ~"No rules expected the token: " + to_str(get_ident_interner(), &tok)); } else if (next_eis.len() > 0u) { /* Now process the next token */ while(next_eis.len() > 0u) { cur_eis.push(next_eis.pop()); } rdr.next_token(); } else /* bb_eis.len() == 1 */ { let rust_parser = Parser(sess, cfg.clone(), rdr.dup()); let mut ei = bb_eis.pop(); match ei.elts[ei.idx].node { match_nonterminal(_, ref name, idx) => { ei.matches[idx].push(@matched_nonterminal( parse_nt(&rust_parser, ident_to_str(name)))); ei.idx += 1u; } _ => fail!() } cur_eis.push(ei); for rust_parser.tokens_consumed.times() || { rdr.next_token(); } } } assert!(cur_eis.len() > 0u); } } pub fn parse_nt(p: &Parser, name: &str) -> nonterminal { match name { "item" => match p.parse_item(~[]) { Some(i) => token::nt_item(i), None => p.fatal("expected an item keyword") }, "block" => token::nt_block(p.parse_block()), "stmt" => token::nt_stmt(p.parse_stmt(~[])), "pat" => token::nt_pat(p.parse_pat()), "expr" => token::nt_expr(p.parse_expr()), "ty" => token::nt_ty(p.parse_ty(false /* no need to disambiguate*/)), // this could be handled like a token, since it is one "ident" => match *p.token { token::IDENT(sn,b) => { p.bump(); token::nt_ident(sn,b) } _ => p.fatal(~"expected ident, found " + token::to_str(get_ident_interner(), p.token)) }, "path" => token::nt_path(p.parse_path_with_tps(false)), "tt" => { *p.quote_depth += 1u; //but in theory, non-quoted tts might be useful let res = token::nt_tt(@p.parse_token_tree()); *p.quote_depth -= 1u; res } "matchers" => token::nt_matchers(p.parse_matchers()), _ => p.fatal(~"Unsupported builtin nonterminal parser: " + name) } }