type T = uint; #[doc = " Divide two numbers, return the result, rounded up. # Arguments * x - an integer * y - an integer distinct from 0u # Return value The smallest integer `q` such that `x/y <= q`. "] pure fn div_ceil(x: uint, y: uint) -> uint { let div = div(x, y); if x % y == 0u { ret div;} else { ret div + 1u; } } #[doc = " Divide two numbers, return the result, rounded to the closest integer. # Arguments * x - an integer * y - an integer distinct from 0u # Return value The integer `q` closest to `x/y`. "] pure fn div_round(x: uint, y: uint) -> uint { let div = div(x, y); if x % y * 2u < y { ret div;} else { ret div + 1u; } } #[doc = " Divide two numbers, return the result, rounded down. Note: This is the same function as `div`. # Arguments * x - an integer * y - an integer distinct from 0u # Return value The smallest integer `q` such that `x/y <= q`. This is either `x/y` or `x/y + 1`. "] pure fn div_floor(x: uint, y: uint) -> uint { ret x / y; } #[doc = "Produce a uint suitable for use in a hash table"] pure fn hash(x: uint) -> uint { ret x; } #[doc = " Iterate over the range [`lo`..`hi`), or stop when requested # Arguments * lo - The integer at which to start the loop (included) * hi - The integer at which to stop the loop (excluded) * it - A block to execute with each consecutive integer of the range. Return `true` to continue, `false` to stop. # Return value `true` If execution proceeded correctly, `false` if it was interrupted, that is if `it` returned `false` at any point. "] fn iterate(lo: uint, hi: uint, it: fn(uint) -> bool) -> bool { let mut i = lo; while i < hi { if (!it(i)) { ret false; } i += 1u; } ret true; } #[doc = "Returns the smallest power of 2 greater than or equal to `n`"] fn next_power_of_two(n: uint) -> uint { let halfbits: uint = sys::size_of::() * 4u; let mut tmp: uint = n - 1u; let mut shift: uint = 1u; while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; } ret tmp + 1u; } #[doc = " Parse a buffer of bytes # Arguments * buf - A byte buffer * radix - The base of the number # Failure `buf` must not be empty "] fn parse_buf(buf: [u8], radix: uint) -> option { if vec::len(buf) == 0u { ret none; } let mut i = vec::len(buf) - 1u; let mut power = 1u; let mut n = 0u; loop { alt char::to_digit(buf[i] as char, radix) { some(d) { n += d * power; } none { ret none; } } power *= radix; if i == 0u { ret some(n); } i -= 1u; }; } #[doc = "Parse a string to an int"] fn from_str(s: str) -> option { parse_buf(str::bytes(s), 10u) } #[doc = "Convert to a string in a given base"] fn to_str(num: uint, radix: uint) -> str { let mut n = num; assert (0u < radix && radix <= 16u); fn digit(n: uint) -> char { ret alt n { 0u { '0' } 1u { '1' } 2u { '2' } 3u { '3' } 4u { '4' } 5u { '5' } 6u { '6' } 7u { '7' } 8u { '8' } 9u { '9' } 10u { 'a' } 11u { 'b' } 12u { 'c' } 13u { 'd' } 14u { 'e' } 15u { 'f' } _ { fail } }; } if n == 0u { ret "0"; } let mut s: str = ""; while n != 0u { s += str::from_byte(digit(n % radix) as u8); n /= radix; } let mut s1: str = ""; let mut len: uint = str::len(s); while len != 0u { len -= 1u; s1 += str::from_byte(s[len]); } ret s1; } #[doc = "Convert to a string"] fn str(i: uint) -> str { ret to_str(i, 10u); } #[test] fn test_from_str() { assert uint::from_str("0") == some(0u); assert uint::from_str("3") == some(3u); assert uint::from_str("10") == some(10u); assert uint::from_str("123456789") == some(123456789u); assert uint::from_str("00100") == some(100u); assert uint::from_str("") == none; assert uint::from_str(" ") == none; assert uint::from_str("x") == none; } #[Test] fn test_parse_buf() { import str::bytes; assert uint::parse_buf(bytes("123"), 10u) == some(123u); assert uint::parse_buf(bytes("1001"), 2u) == some(9u); assert uint::parse_buf(bytes("123"), 8u) == some(83u); assert uint::parse_buf(bytes("123"), 16u) == some(291u); assert uint::parse_buf(bytes("ffff"), 16u) == some(65535u); assert uint::parse_buf(bytes("z"), 36u) == some(35u); assert uint::parse_buf(str::bytes("Z"), 10u) == none; assert uint::parse_buf(str::bytes("_"), 2u) == none; } #[test] fn test_next_power_of_two() { assert (uint::next_power_of_two(0u) == 0u); assert (uint::next_power_of_two(1u) == 1u); assert (uint::next_power_of_two(2u) == 2u); assert (uint::next_power_of_two(3u) == 4u); assert (uint::next_power_of_two(4u) == 4u); assert (uint::next_power_of_two(5u) == 8u); assert (uint::next_power_of_two(6u) == 8u); assert (uint::next_power_of_two(7u) == 8u); assert (uint::next_power_of_two(8u) == 8u); assert (uint::next_power_of_two(9u) == 16u); assert (uint::next_power_of_two(10u) == 16u); assert (uint::next_power_of_two(11u) == 16u); assert (uint::next_power_of_two(12u) == 16u); assert (uint::next_power_of_two(13u) == 16u); assert (uint::next_power_of_two(14u) == 16u); assert (uint::next_power_of_two(15u) == 16u); assert (uint::next_power_of_two(16u) == 16u); assert (uint::next_power_of_two(17u) == 32u); assert (uint::next_power_of_two(18u) == 32u); assert (uint::next_power_of_two(19u) == 32u); assert (uint::next_power_of_two(20u) == 32u); assert (uint::next_power_of_two(21u) == 32u); assert (uint::next_power_of_two(22u) == 32u); assert (uint::next_power_of_two(23u) == 32u); assert (uint::next_power_of_two(24u) == 32u); assert (uint::next_power_of_two(25u) == 32u); assert (uint::next_power_of_two(26u) == 32u); assert (uint::next_power_of_two(27u) == 32u); assert (uint::next_power_of_two(28u) == 32u); assert (uint::next_power_of_two(29u) == 32u); assert (uint::next_power_of_two(30u) == 32u); assert (uint::next_power_of_two(31u) == 32u); assert (uint::next_power_of_two(32u) == 32u); assert (uint::next_power_of_two(33u) == 64u); assert (uint::next_power_of_two(34u) == 64u); assert (uint::next_power_of_two(35u) == 64u); assert (uint::next_power_of_two(36u) == 64u); assert (uint::next_power_of_two(37u) == 64u); assert (uint::next_power_of_two(38u) == 64u); assert (uint::next_power_of_two(39u) == 64u); } #[test] fn test_overflows() { assert (uint::max_value > 0u); assert (uint::min_value <= 0u); assert (uint::min_value + uint::max_value + 1u == 0u); } #[test] fn test_div() { assert(uint::div_floor(3u, 4u) == 0u); assert(uint::div_ceil(3u, 4u) == 1u); assert(uint::div_round(3u, 4u) == 1u); }