// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A 'lint' check is a kind of miscellaneous constraint that a user _might_ //! want to enforce, but might reasonably want to permit as well, on a //! module-by-module basis. They contrast with static constraints enforced by //! other phases of the compiler, which are generally required to hold in order //! to compile the program at all. //! //! The lint checking is all consolidated into one pass which runs just before //! translation to LLVM bytecode. Throughout compilation, lint warnings can be //! added via the `add_lint` method on the Session structure. This requires a //! span and an id of the node that the lint is being added to. The lint isn't //! actually emitted at that time because it is unknown what the actual lint //! level at that location is. //! //! To actually emit lint warnings/errors, a separate pass is used just before //! translation. A context keeps track of the current state of all lint levels. //! Upon entering a node of the ast which can modify the lint settings, the //! previous lint state is pushed onto a stack and the ast is then recursed //! upon. As the ast is traversed, this keeps track of the current lint level //! for all lint attributes. //! //! To add a new lint warning, all you need to do is to either invoke `add_lint` //! on the session at the appropriate time, or write a few linting functions and //! modify the Context visitor appropriately. If you're adding lints from the //! Context itself, span_lint should be used instead of add_lint. use driver::session; use middle::privacy; use middle::trans::adt; // for `adt::is_ffi_safe` use middle::ty; use middle::pat_util; use metadata::csearch; use util::ppaux::{ty_to_str}; use std::cmp; use std::hashmap::HashMap; use std::i16; use std::i32; use std::i64; use std::i8; use std::u16; use std::u32; use std::u64; use std::u8; use extra::smallintmap::SmallIntMap; use syntax::ast_map; use syntax::attr; use syntax::attr::{AttrMetaMethods, AttributeMethods}; use syntax::codemap::Span; use syntax::codemap; use syntax::parse::token; use syntax::{ast, ast_util, visit}; use syntax::visit::Visitor; #[deriving(Clone, Eq)] pub enum lint { ctypes, unused_imports, unnecessary_qualification, while_true, path_statement, unrecognized_lint, non_camel_case_types, non_uppercase_statics, non_uppercase_pattern_statics, type_limits, type_overflow, unused_unsafe, unsafe_block, managed_heap_memory, owned_heap_memory, heap_memory, unused_variable, dead_assignment, unused_mut, unnecessary_allocation, missing_doc, unreachable_code, deprecated, experimental, unstable, warnings, } pub fn level_to_str(lv: level) -> &'static str { match lv { allow => "allow", warn => "warn", deny => "deny", forbid => "forbid" } } #[deriving(Clone, Eq, Ord)] pub enum level { allow, warn, deny, forbid } #[deriving(Clone, Eq)] pub struct LintSpec { lint: lint, desc: &'static str, default: level } impl Ord for LintSpec { fn lt(&self, other: &LintSpec) -> bool { self.default < other.default } } pub type LintDict = HashMap<&'static str, LintSpec>; #[deriving(Eq)] enum LintSource { Node(Span), Default, CommandLine } static lint_table: &'static [(&'static str, LintSpec)] = &[ ("ctypes", LintSpec { lint: ctypes, desc: "proper use of std::libc types in foreign modules", default: warn }), ("unused_imports", LintSpec { lint: unused_imports, desc: "imports that are never used", default: warn }), ("unnecessary_qualification", LintSpec { lint: unnecessary_qualification, desc: "detects unnecessarily qualified names", default: allow }), ("while_true", LintSpec { lint: while_true, desc: "suggest using loop { } instead of while(true) { }", default: warn }), ("path_statement", LintSpec { lint: path_statement, desc: "path statements with no effect", default: warn }), ("unrecognized_lint", LintSpec { lint: unrecognized_lint, desc: "unrecognized lint attribute", default: warn }), ("non_camel_case_types", LintSpec { lint: non_camel_case_types, desc: "types, variants and traits should have camel case names", default: allow }), ("non_uppercase_statics", LintSpec { lint: non_uppercase_statics, desc: "static constants should have uppercase identifiers", default: allow }), ("non_uppercase_pattern_statics", LintSpec { lint: non_uppercase_pattern_statics, desc: "static constants in match patterns should be all caps", default: warn }), ("managed_heap_memory", LintSpec { lint: managed_heap_memory, desc: "use of managed (@ type) heap memory", default: allow }), ("owned_heap_memory", LintSpec { lint: owned_heap_memory, desc: "use of owned (~ type) heap memory", default: allow }), ("heap_memory", LintSpec { lint: heap_memory, desc: "use of any (~ type or @ type) heap memory", default: allow }), ("type_limits", LintSpec { lint: type_limits, desc: "comparisons made useless by limits of the types involved", default: warn }), ("type_overflow", LintSpec { lint: type_overflow, desc: "literal out of range for its type", default: warn }), ("unused_unsafe", LintSpec { lint: unused_unsafe, desc: "unnecessary use of an `unsafe` block", default: warn }), ("unsafe_block", LintSpec { lint: unsafe_block, desc: "usage of an `unsafe` block", default: allow }), ("unused_variable", LintSpec { lint: unused_variable, desc: "detect variables which are not used in any way", default: warn }), ("dead_assignment", LintSpec { lint: dead_assignment, desc: "detect assignments that will never be read", default: warn }), ("unused_mut", LintSpec { lint: unused_mut, desc: "detect mut variables which don't need to be mutable", default: warn }), ("unnecessary_allocation", LintSpec { lint: unnecessary_allocation, desc: "detects unnecessary allocations that can be eliminated", default: warn }), ("missing_doc", LintSpec { lint: missing_doc, desc: "detects missing documentation for public members", default: allow }), ("unreachable_code", LintSpec { lint: unreachable_code, desc: "detects unreachable code", default: warn }), ("deprecated", LintSpec { lint: deprecated, desc: "detects use of #[deprecated] items", default: warn }), ("experimental", LintSpec { lint: experimental, desc: "detects use of #[experimental] items", default: warn }), ("unstable", LintSpec { lint: unstable, desc: "detects use of #[unstable] items (incl. items with no stability attribute)", default: allow }), ("warnings", LintSpec { lint: warnings, desc: "mass-change the level for lints which produce warnings", default: warn }), ]; /* Pass names should not contain a '-', as the compiler normalizes '-' to '_' in command-line flags */ pub fn get_lint_dict() -> LintDict { let mut map = HashMap::new(); for &(k, v) in lint_table.iter() { map.insert(k, v); } return map; } struct Context<'self> { // All known lint modes (string versions) dict: @LintDict, // Current levels of each lint warning cur: SmallIntMap<(level, LintSource)>, // context we're checking in (used to access fields like sess) tcx: ty::ctxt, // Items exported by the crate; used by the missing_doc lint. exported_items: &'self privacy::ExportedItems, // The id of the current `ast::struct_def` being walked. cur_struct_def_id: ast::NodeId, // Whether some ancestor of the current node was marked // #[doc(hidden)]. is_doc_hidden: bool, // When recursing into an attributed node of the ast which modifies lint // levels, this stack keeps track of the previous lint levels of whatever // was modified. lint_stack: ~[(lint, level, LintSource)], // id of the last visited negated expression negated_expr_id: ast::NodeId } impl<'self> Context<'self> { fn get_level(&self, lint: lint) -> level { match self.cur.find(&(lint as uint)) { Some(&(lvl, _)) => lvl, None => allow } } fn get_source(&self, lint: lint) -> LintSource { match self.cur.find(&(lint as uint)) { Some(&(_, src)) => src, None => Default } } fn set_level(&mut self, lint: lint, level: level, src: LintSource) { if level == allow { self.cur.remove(&(lint as uint)); } else { self.cur.insert(lint as uint, (level, src)); } } fn lint_to_str(&self, lint: lint) -> &'static str { for (k, v) in self.dict.iter() { if v.lint == lint { return *k; } } fail!("unregistered lint {:?}", lint); } fn span_lint(&self, lint: lint, span: Span, msg: &str) { let (level, src) = match self.cur.find(&(lint as uint)) { None => { return } Some(&(warn, src)) => (self.get_level(warnings), src), Some(&pair) => pair, }; if level == allow { return } let mut note = None; let msg = match src { Default => { format!("{}, \\#[{}({})] on by default", msg, level_to_str(level), self.lint_to_str(lint)) }, CommandLine => { format!("{} [-{} {}]", msg, match level { warn => 'W', deny => 'D', forbid => 'F', allow => fail!() }, self.lint_to_str(lint).replace("_", "-")) }, Node(src) => { note = Some(src); msg.to_str() } }; match level { warn => { self.tcx.sess.span_warn(span, msg); } deny | forbid => { self.tcx.sess.span_err(span, msg); } allow => fail!(), } for &span in note.iter() { self.tcx.sess.span_note(span, "lint level defined here"); } } /** * Merge the lints specified by any lint attributes into the * current lint context, call the provided function, then reset the * lints in effect to their previous state. */ fn with_lint_attrs(&mut self, attrs: &[ast::Attribute], f: |&mut Context|) { // Parse all of the lint attributes, and then add them all to the // current dictionary of lint information. Along the way, keep a history // of what we changed so we can roll everything back after invoking the // specified closure let mut pushed = 0u; do each_lint(self.tcx.sess, attrs) |meta, level, lintname| { match self.dict.find_equiv(&lintname) { None => { self.span_lint( unrecognized_lint, meta.span, format!("unknown `{}` attribute: `{}`", level_to_str(level), lintname)); } Some(lint) => { let lint = lint.lint; let now = self.get_level(lint); if now == forbid && level != forbid { self.tcx.sess.span_err(meta.span, format!("{}({}) overruled by outer forbid({})", level_to_str(level), lintname, lintname)); } else if now != level { let src = self.get_source(lint); self.lint_stack.push((lint, now, src)); pushed += 1; self.set_level(lint, level, Node(meta.span)); } } } true }; let old_is_doc_hidden = self.is_doc_hidden; self.is_doc_hidden = self.is_doc_hidden || attrs.iter().any(|attr| ("doc" == attr.name() && match attr.meta_item_list() { None => false, Some(l) => attr::contains_name(l, "hidden") })); f(self); // rollback self.is_doc_hidden = old_is_doc_hidden; do pushed.times { let (lint, lvl, src) = self.lint_stack.pop(); self.set_level(lint, lvl, src); } } fn visit_ids(&self, f: |&mut ast_util::IdVisitor|) { let mut v = ast_util::IdVisitor { operation: self, pass_through_items: false, visited_outermost: false, }; f(&mut v); } } pub fn each_lint(sess: session::Session, attrs: &[ast::Attribute], f: |@ast::MetaItem, level, @str| -> bool) -> bool { let xs = [allow, warn, deny, forbid]; for &level in xs.iter() { let level_name = level_to_str(level); for attr in attrs.iter().filter(|m| level_name == m.name()) { let meta = attr.node.value; let metas = match meta.node { ast::MetaList(_, ref metas) => metas, _ => { sess.span_err(meta.span, "malformed lint attribute"); continue; } }; for meta in metas.iter() { match meta.node { ast::MetaWord(lintname) => { if !f(*meta, level, lintname) { return false; } } _ => { sess.span_err(meta.span, "malformed lint attribute"); } } } } } true } fn check_while_true_expr(cx: &Context, e: &ast::Expr) { match e.node { ast::ExprWhile(cond, _) => { match cond.node { ast::ExprLit(@codemap::Spanned { node: ast::lit_bool(true), _}) => { cx.span_lint(while_true, e.span, "denote infinite loops with loop { ... }"); } _ => () } } _ => () } } fn check_type_limits(cx: &Context, e: &ast::Expr) { return match e.node { ast::ExprBinary(_, binop, l, r) => { if is_comparison(binop) && !check_limits(cx.tcx, binop, l, r) { cx.span_lint(type_limits, e.span, "comparison is useless due to type limits"); } }, ast::ExprLit(lit) => { match ty::get(ty::expr_ty(cx.tcx, e)).sty { ty::ty_int(t) => { let int_type = if t == ast::ty_i { cx.tcx.sess.targ_cfg.int_type } else { t }; let (min, max) = int_ty_range(int_type); let mut lit_val: i64 = match lit.node { ast::lit_int(v, _) => v, ast::lit_uint(v, _) => v as i64, ast::lit_int_unsuffixed(v) => v, _ => fail!() }; if cx.negated_expr_id == e.id { lit_val *= -1; } if lit_val < min || lit_val > max { cx.span_lint(type_overflow, e.span, "literal out of range for its type"); } }, ty::ty_uint(t) => { let uint_type = if t == ast::ty_u { cx.tcx.sess.targ_cfg.uint_type } else { t }; let (min, max) = uint_ty_range(uint_type); let lit_val: u64 = match lit.node { ast::lit_int(v, _) => v as u64, ast::lit_uint(v, _) => v, ast::lit_int_unsuffixed(v) => v as u64, _ => fail!() }; if lit_val < min || lit_val > max { cx.span_lint(type_overflow, e.span, "literal out of range for its type"); } }, _ => () }; }, _ => () }; fn is_valid(binop: ast::BinOp, v: T, min: T, max: T) -> bool { match binop { ast::BiLt => v <= max, ast::BiLe => v < max, ast::BiGt => v >= min, ast::BiGe => v > min, ast::BiEq | ast::BiNe => v >= min && v <= max, _ => fail!() } } fn rev_binop(binop: ast::BinOp) -> ast::BinOp { match binop { ast::BiLt => ast::BiGt, ast::BiLe => ast::BiGe, ast::BiGt => ast::BiLt, ast::BiGe => ast::BiLe, _ => binop } } // for int & uint, be conservative with the warnings, so that the // warnings are consistent between 32- and 64-bit platforms fn int_ty_range(int_ty: ast::int_ty) -> (i64, i64) { match int_ty { ast::ty_i => (i64::min_value, i64::max_value), ast::ty_i8 => (i8::min_value as i64, i8::max_value as i64), ast::ty_i16 => (i16::min_value as i64, i16::max_value as i64), ast::ty_i32 => (i32::min_value as i64, i32::max_value as i64), ast::ty_i64 => (i64::min_value, i64::max_value) } } fn uint_ty_range(uint_ty: ast::uint_ty) -> (u64, u64) { match uint_ty { ast::ty_u => (u64::min_value, u64::max_value), ast::ty_u8 => (u8::min_value as u64, u8::max_value as u64), ast::ty_u16 => (u16::min_value as u64, u16::max_value as u64), ast::ty_u32 => (u32::min_value as u64, u32::max_value as u64), ast::ty_u64 => (u64::min_value, u64::max_value) } } fn check_limits(tcx: ty::ctxt, binop: ast::BinOp, l: &ast::Expr, r: &ast::Expr) -> bool { let (lit, expr, swap) = match (&l.node, &r.node) { (&ast::ExprLit(_), _) => (l, r, true), (_, &ast::ExprLit(_)) => (r, l, false), _ => return true }; // Normalize the binop so that the literal is always on the RHS in // the comparison let norm_binop = if swap { rev_binop(binop) } else { binop }; match ty::get(ty::expr_ty(tcx, expr)).sty { ty::ty_int(int_ty) => { let (min, max) = int_ty_range(int_ty); let lit_val: i64 = match lit.node { ast::ExprLit(li) => match li.node { ast::lit_int(v, _) => v, ast::lit_uint(v, _) => v as i64, ast::lit_int_unsuffixed(v) => v, _ => return true }, _ => fail!() }; is_valid(norm_binop, lit_val, min, max) } ty::ty_uint(uint_ty) => { let (min, max): (u64, u64) = uint_ty_range(uint_ty); let lit_val: u64 = match lit.node { ast::ExprLit(li) => match li.node { ast::lit_int(v, _) => v as u64, ast::lit_uint(v, _) => v, ast::lit_int_unsuffixed(v) => v as u64, _ => return true }, _ => fail!() }; is_valid(norm_binop, lit_val, min, max) } _ => true } } fn is_comparison(binop: ast::BinOp) -> bool { match binop { ast::BiEq | ast::BiLt | ast::BiLe | ast::BiNe | ast::BiGe | ast::BiGt => true, _ => false } } } fn check_item_ctypes(cx: &Context, it: &ast::item) { fn check_ty(cx: &Context, ty: &ast::Ty) { match ty.node { ast::ty_path(_, _, id) => { match cx.tcx.def_map.get_copy(&id) { ast::DefPrimTy(ast::ty_int(ast::ty_i)) => { cx.span_lint(ctypes, ty.span, "found rust type `int` in foreign module, while \ libc::c_int or libc::c_long should be used"); } ast::DefPrimTy(ast::ty_uint(ast::ty_u)) => { cx.span_lint(ctypes, ty.span, "found rust type `uint` in foreign module, while \ libc::c_uint or libc::c_ulong should be used"); } ast::DefTy(def_id) => { if !adt::is_ffi_safe(cx.tcx, def_id) { cx.span_lint(ctypes, ty.span, "found enum type without foreign-function-safe \ representation annotation in foreign module"); // NOTE this message could be more helpful } } _ => () } } ast::ty_ptr(ref mt) => { check_ty(cx, mt.ty) } _ => () } } fn check_foreign_fn(cx: &Context, decl: &ast::fn_decl) { for input in decl.inputs.iter() { check_ty(cx, &input.ty); } check_ty(cx, &decl.output) } match it.node { ast::item_foreign_mod(ref nmod) if !nmod.abis.is_intrinsic() => { for ni in nmod.items.iter() { match ni.node { ast::foreign_item_fn(ref decl, _) => { check_foreign_fn(cx, decl); } ast::foreign_item_static(ref t, _) => { check_ty(cx, t); } } } } _ => {/* nothing to do */ } } } fn check_heap_type(cx: &Context, span: Span, ty: ty::t) { let xs = [managed_heap_memory, owned_heap_memory, heap_memory]; for &lint in xs.iter() { if cx.get_level(lint) == allow { continue } let mut n_box = 0; let mut n_uniq = 0; ty::fold_ty(cx.tcx, ty, |t| { match ty::get(t).sty { ty::ty_box(_) => n_box += 1, ty::ty_uniq(_) => n_uniq += 1, _ => () }; t }); if n_uniq > 0 && lint != managed_heap_memory { let s = ty_to_str(cx.tcx, ty); let m = format!("type uses owned (~ type) pointers: {}", s); cx.span_lint(lint, span, m); } if n_box > 0 && lint != owned_heap_memory { let s = ty_to_str(cx.tcx, ty); let m = format!("type uses managed (@ type) pointers: {}", s); cx.span_lint(lint, span, m); } } } fn check_heap_item(cx: &Context, it: &ast::item) { match it.node { ast::item_fn(*) | ast::item_ty(*) | ast::item_enum(*) | ast::item_struct(*) => check_heap_type(cx, it.span, ty::node_id_to_type(cx.tcx, it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { ast::item_struct(struct_def, _) => { for struct_field in struct_def.fields.iter() { check_heap_type(cx, struct_field.span, ty::node_id_to_type(cx.tcx, struct_field.node.id)); } } _ => () } } fn check_heap_expr(cx: &Context, e: &ast::Expr) { let ty = ty::expr_ty(cx.tcx, e); check_heap_type(cx, e.span, ty); } fn check_path_statement(cx: &Context, s: &ast::Stmt) { match s.node { ast::StmtSemi(@ast::Expr { node: ast::ExprPath(_), _ }, _) => { cx.span_lint(path_statement, s.span, "path statement with no effect"); } _ => () } } fn check_item_non_camel_case_types(cx: &Context, it: &ast::item) { fn is_camel_case(cx: ty::ctxt, ident: ast::Ident) -> bool { let ident = cx.sess.str_of(ident); assert!(!ident.is_empty()); let ident = ident.trim_chars(&'_'); // start with a non-lowercase letter rather than non-uppercase // ones (some scripts don't have a concept of upper/lowercase) !ident.char_at(0).is_lowercase() && !ident.contains_char('_') } fn check_case(cx: &Context, sort: &str, ident: ast::Ident, span: Span) { if !is_camel_case(cx.tcx, ident) { cx.span_lint( non_camel_case_types, span, format!("{} `{}` should have a camel case identifier", sort, cx.tcx.sess.str_of(ident))); } } match it.node { ast::item_ty(*) | ast::item_struct(*) => { check_case(cx, "type", it.ident, it.span) } ast::item_trait(*) => { check_case(cx, "trait", it.ident, it.span) } ast::item_enum(ref enum_definition, _) => { check_case(cx, "type", it.ident, it.span); for variant in enum_definition.variants.iter() { check_case(cx, "variant", variant.node.name, variant.span); } } _ => () } } fn check_item_non_uppercase_statics(cx: &Context, it: &ast::item) { match it.node { // only check static constants ast::item_static(_, ast::MutImmutable, _) => { let s = cx.tcx.sess.str_of(it.ident); // check for lowercase letters rather than non-uppercase // ones (some scripts don't have a concept of // upper/lowercase) if s.iter().any(|c| c.is_lowercase()) { cx.span_lint(non_uppercase_statics, it.span, "static constant should have an uppercase identifier"); } } _ => {} } } fn check_pat_non_uppercase_statics(cx: &Context, p: &ast::Pat) { // Lint for constants that look like binding identifiers (#7526) match (&p.node, cx.tcx.def_map.find(&p.id)) { (&ast::PatIdent(_, ref path, _), Some(&ast::DefStatic(_, false))) => { // last identifier alone is right choice for this lint. let ident = path.segments.last().identifier; let s = cx.tcx.sess.str_of(ident); if s.iter().any(|c| c.is_lowercase()) { cx.span_lint(non_uppercase_pattern_statics, path.span, "static constant in pattern should be all caps"); } } _ => {} } } fn check_unused_unsafe(cx: &Context, e: &ast::Expr) { match e.node { // Don't warn about generated blocks, that'll just pollute the output. ast::ExprBlock(ref blk) => { if blk.rules == ast::UnsafeBlock(ast::UserProvided) && !cx.tcx.used_unsafe.contains(&blk.id) { cx.span_lint(unused_unsafe, blk.span, "unnecessary `unsafe` block"); } } _ => () } } fn check_unsafe_block(cx: &Context, e: &ast::Expr) { match e.node { // Don't warn about generated blocks, that'll just pollute the output. ast::ExprBlock(ref blk) if blk.rules == ast::UnsafeBlock(ast::UserProvided) => { cx.span_lint(unsafe_block, blk.span, "usage of an `unsafe` block"); } _ => () } } fn check_unused_mut_pat(cx: &Context, p: &ast::Pat) { match p.node { ast::PatIdent(ast::BindByValue(ast::MutMutable), ref path, _) if pat_util::pat_is_binding(cx.tcx.def_map, p)=> { // `let mut _a = 1;` doesn't need a warning. let initial_underscore = match path.segments { [ast::PathSegment { identifier: id, _ }] => { cx.tcx.sess.str_of(id).starts_with("_") } _ => { cx.tcx.sess.span_bug(p.span, "mutable binding that doesn't \ consist of exactly one segment"); } }; if !initial_underscore && !cx.tcx.used_mut_nodes.contains(&p.id) { cx.span_lint(unused_mut, p.span, "variable does not need to be mutable"); } } _ => () } } fn check_unnecessary_allocation(cx: &Context, e: &ast::Expr) { // Warn if string and vector literals with sigils are immediately borrowed. // Those can have the sigil removed. match e.node { ast::ExprVstore(e2, ast::ExprVstoreUniq) | ast::ExprVstore(e2, ast::ExprVstoreBox) => { match e2.node { ast::ExprLit(@codemap::Spanned{node: ast::lit_str(*), _}) | ast::ExprVec(*) => {} _ => return } } _ => return } match cx.tcx.adjustments.find_copy(&e.id) { Some(@ty::AutoDerefRef(ty::AutoDerefRef { autoref: Some(ty::AutoBorrowVec(*)), _ })) => { cx.span_lint(unnecessary_allocation, e.span, "unnecessary allocation, the sigil can be removed"); } _ => () } } fn check_missing_doc_attrs(cx: &Context, id: ast::NodeId, attrs: &[ast::Attribute], sp: Span, desc: &'static str) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.tcx.sess.opts.test { return } // `#[doc(hidden)]` disables missing_doc check. if cx.is_doc_hidden { return } // Only check publicly-visible items, using the result from the // privacy pass. if !cx.exported_items.contains(&id) { return } if !attrs.iter().any(|a| a.node.is_sugared_doc) { cx.span_lint(missing_doc, sp, format!("missing documentation for {}", desc)); } } fn check_missing_doc_item(cx: &mut Context, it: &ast::item) { // XXX doesn't need to be mut let desc = match it.node { ast::item_fn(*) => "a function", ast::item_mod(*) => "a module", ast::item_enum(*) => "an enum", ast::item_struct(*) => "a struct", ast::item_trait(*) => "a trait", _ => return }; check_missing_doc_attrs(cx, it.id, it.attrs, it.span, desc); } fn check_missing_doc_method(cx: &Context, m: &ast::method) { let did = ast::DefId { crate: ast::LOCAL_CRATE, node: m.id }; match cx.tcx.methods.find(&did) { None => cx.tcx.sess.span_bug(m.span, "missing method descriptor?!"), Some(md) => { match md.container { // Always check default methods defined on traits. ty::TraitContainer(*) => {} // For methods defined on impls, it depends on whether // it is an implementation for a trait or is a plain // impl. ty::ImplContainer(cid) => { match ty::impl_trait_ref(cx.tcx, cid) { Some(*) => return, // impl for trait: don't doc None => {} // plain impl: doc according to privacy } } } } } check_missing_doc_attrs(cx, m.id, m.attrs, m.span, "a method"); } fn check_missing_doc_ty_method(cx: &Context, tm: &ast::TypeMethod) { check_missing_doc_attrs(cx, tm.id, tm.attrs, tm.span, "a type method"); } fn check_missing_doc_struct_field(cx: &Context, sf: &ast::struct_field) { match sf.node.kind { ast::named_field(_, vis) if vis != ast::private => check_missing_doc_attrs(cx, cx.cur_struct_def_id, sf.node.attrs, sf.span, "a struct field"), _ => {} } } fn check_missing_doc_variant(cx: &Context, v: &ast::variant) { check_missing_doc_attrs(cx, v.node.id, v.node.attrs, v.span, "a variant"); } /// Checks for use of items with #[deprecated], #[experimental] and /// #[unstable] (or none of them) attributes. fn check_stability(cx: &Context, e: &ast::Expr) { let def = match e.node { ast::ExprMethodCall(*) | ast::ExprPath(*) | ast::ExprStruct(*) => { match cx.tcx.def_map.find(&e.id) { Some(&def) => def, None => return } } _ => return }; let id = ast_util::def_id_of_def(def); let stability = if ast_util::is_local(id) { // this crate match cx.tcx.items.find(&id.node) { Some(ast_node) => { let s = do ast_node.with_attrs |attrs| { do attrs.map |a| { attr::find_stability(a.iter().map(|a| a.meta())) } }; match s { Some(s) => s, // no possibility of having attributes // (e.g. it's a local variable), so just // ignore it. None => return } } _ => cx.tcx.sess.bug(format!("handle_def: {:?} not found", id)) } } else { // cross-crate let mut s = None; // run through all the attributes and take the first // stability one. do csearch::get_item_attrs(cx.tcx.cstore, id) |meta_items| { if s.is_none() { s = attr::find_stability(meta_items.move_iter()) } } s }; let (lint, label) = match stability { // no stability attributes == Unstable None => (unstable, "unmarked"), Some(attr::Stability { level: attr::Unstable, _ }) => (unstable, "unstable"), Some(attr::Stability { level: attr::Experimental, _ }) => (experimental, "experimental"), Some(attr::Stability { level: attr::Deprecated, _ }) => (deprecated, "deprecated"), _ => return }; let msg = match stability { Some(attr::Stability { text: Some(ref s), _ }) => { format!("use of {} item: {}", label, *s) } _ => format!("use of {} item", label) }; cx.span_lint(lint, e.span, msg); } impl<'self> Visitor<()> for Context<'self> { fn visit_item(&mut self, it: @ast::item, _: ()) { do self.with_lint_attrs(it.attrs) |cx| { check_item_ctypes(cx, it); check_item_non_camel_case_types(cx, it); check_item_non_uppercase_statics(cx, it); check_heap_item(cx, it); check_missing_doc_item(cx, it); do cx.visit_ids |v| { v.visit_item(it, ()); } visit::walk_item(cx, it, ()); } } fn visit_pat(&mut self, p: &ast::Pat, _: ()) { check_pat_non_uppercase_statics(self, p); check_unused_mut_pat(self, p); visit::walk_pat(self, p, ()); } fn visit_expr(&mut self, e: @ast::Expr, _: ()) { match e.node { ast::ExprUnary(_, ast::UnNeg, expr) => { // propagate negation, if the negation itself isn't negated if self.negated_expr_id != e.id { self.negated_expr_id = expr.id; } }, ast::ExprParen(expr) => if self.negated_expr_id == e.id { self.negated_expr_id = expr.id }, _ => () }; check_while_true_expr(self, e); check_stability(self, e); check_unused_unsafe(self, e); check_unsafe_block(self, e); check_unnecessary_allocation(self, e); check_heap_expr(self, e); check_type_limits(self, e); visit::walk_expr(self, e, ()); } fn visit_stmt(&mut self, s: @ast::Stmt, _: ()) { check_path_statement(self, s); visit::walk_stmt(self, s, ()); } fn visit_fn(&mut self, fk: &visit::fn_kind, decl: &ast::fn_decl, body: &ast::Block, span: Span, id: ast::NodeId, _: ()) { let recurse = |this: &mut Context| { visit::walk_fn(this, fk, decl, body, span, id, ()); }; match *fk { visit::fk_method(_, _, m) => { do self.with_lint_attrs(m.attrs) |cx| { check_missing_doc_method(cx, m); do cx.visit_ids |v| { v.visit_fn(fk, decl, body, span, id, ()); } recurse(cx); } } _ => recurse(self), } } fn visit_ty_method(&mut self, t: &ast::TypeMethod, _: ()) { do self.with_lint_attrs(t.attrs) |cx| { check_missing_doc_ty_method(cx, t); visit::walk_ty_method(cx, t, ()); } } fn visit_struct_def(&mut self, s: @ast::struct_def, i: ast::Ident, g: &ast::Generics, id: ast::NodeId, _: ()) { let old_id = self.cur_struct_def_id; self.cur_struct_def_id = id; visit::walk_struct_def(self, s, i, g, id, ()); self.cur_struct_def_id = old_id; } fn visit_struct_field(&mut self, s: @ast::struct_field, _: ()) { do self.with_lint_attrs(s.node.attrs) |cx| { check_missing_doc_struct_field(cx, s); visit::walk_struct_field(cx, s, ()); } } fn visit_variant(&mut self, v: &ast::variant, g: &ast::Generics, _: ()) { do self.with_lint_attrs(v.node.attrs) |cx| { check_missing_doc_variant(cx, v); visit::walk_variant(cx, v, g, ()); } } } impl<'self> ast_util::IdVisitingOperation for Context<'self> { fn visit_id(&self, id: ast::NodeId) { match self.tcx.sess.lints.pop(&id) { None => {} Some(l) => { for (lint, span, msg) in l.move_iter() { self.span_lint(lint, span, msg) } } } } } pub fn check_crate(tcx: ty::ctxt, exported_items: &privacy::ExportedItems, crate: &ast::Crate) { let mut cx = Context { dict: @get_lint_dict(), cur: SmallIntMap::new(), tcx: tcx, exported_items: exported_items, cur_struct_def_id: -1, is_doc_hidden: false, lint_stack: ~[], negated_expr_id: -1 }; // Install default lint levels, followed by the command line levels, and // then actually visit the whole crate. for (_, spec) in cx.dict.iter() { cx.set_level(spec.lint, spec.default, Default); } for &(lint, level) in tcx.sess.opts.lint_opts.iter() { cx.set_level(lint, level, CommandLine); } do cx.with_lint_attrs(crate.attrs) |cx| { do cx.visit_ids |v| { v.visited_outermost = true; visit::walk_crate(v, crate, ()); } visit::walk_crate(cx, crate, ()); } // If we missed any lints added to the session, then there's a bug somewhere // in the iteration code. for (id, v) in tcx.sess.lints.iter() { for &(lint, span, ref msg) in v.iter() { tcx.sess.span_bug(span, format!("unprocessed lint {:?} at {}: {}", lint, ast_map::node_id_to_str(tcx.items, *id, token::get_ident_interner()), *msg)) } } tcx.sess.abort_if_errors(); }