//! Checks that a set of measurements looks like a linear function rather than //! like a quadratic function. Algorithm: //! //! 1. Linearly scale input to be in [0; 1) //! 2. Using linear regression, compute the best linear function approximating //! the input. //! 3. Compute RMSE and maximal absolute error. //! 4. Check that errors are within tolerances and that the constant term is not //! too negative. //! //! Ideally, we should use a proper "model selection" to directly compare //! quadratic and linear models, but that sounds rather complicated: //! //! https://stats.stackexchange.com/questions/21844/selecting-best-model-based-on-linear-quadratic-and-cubic-fit-of-data //! //! We might get false positives on a VM, but never false negatives. So, if the //! first round fails, we repeat the ordeal three more times and fail only if //! every time there's a fault. use stdx::format_to; #[derive(Default)] pub struct AssertLinear { rounds: Vec, } #[derive(Default)] struct Round { samples: Vec<(f64, f64)>, plot: String, linear: bool, } impl AssertLinear { pub fn next_round(&mut self) -> bool { if let Some(round) = self.rounds.last_mut() { round.finish(); } if self.rounds.iter().any(|it| it.linear) || self.rounds.len() == 4 { return false; } self.rounds.push(Round::default()); true } pub fn sample(&mut self, x: f64, y: f64) { self.rounds.last_mut().unwrap().samples.push((x, y)); } } impl Drop for AssertLinear { fn drop(&mut self) { assert!(!self.rounds.is_empty()); if self.rounds.iter().all(|it| !it.linear) { for round in &self.rounds { eprintln!("\n{}", round.plot); } panic!("Doesn't look linear!"); } } } impl Round { fn finish(&mut self) { let (mut xs, mut ys): (Vec<_>, Vec<_>) = self.samples.iter().copied().unzip(); normalize(&mut xs); normalize(&mut ys); let xy = xs.iter().copied().zip(ys.iter().copied()); // Linear regression: finding a and b to fit y = a + b*x. let mean_x = mean(&xs); let mean_y = mean(&ys); let b = { let mut num = 0.0; let mut denom = 0.0; for (x, y) in xy.clone() { num += (x - mean_x) * (y - mean_y); denom += (x - mean_x).powi(2); } num / denom }; let a = mean_y - b * mean_x; self.plot = format!("y_pred = {:.3} + {:.3} * x\n\nx y y_pred\n", a, b); let mut se = 0.0; let mut max_error = 0.0f64; for (x, y) in xy { let y_pred = a + b * x; se += (y - y_pred).powi(2); max_error = max_error.max((y_pred - y).abs()); format_to!(self.plot, "{:.3} {:.3} {:.3}\n", x, y, y_pred); } let rmse = (se / xs.len() as f64).sqrt(); format_to!(self.plot, "\nrmse = {:.3} max error = {:.3}", rmse, max_error); self.linear = rmse < 0.05 && max_error < 0.1 && a > -0.1; fn normalize(xs: &mut Vec) { let max = xs.iter().copied().max_by(|a, b| a.partial_cmp(b).unwrap()).unwrap(); xs.iter_mut().for_each(|it| *it /= max); } fn mean(xs: &[f64]) -> f64 { xs.iter().copied().sum::() / (xs.len() as f64) } } }