use crate::base::*; use crate::config::StripUnconfigured; use crate::configure; use crate::hygiene::SyntaxContext; use crate::mbe::macro_rules::annotate_err_with_kind; use crate::module::{mod_dir_path, parse_external_mod, DirOwnership, ParsedExternalMod}; use crate::placeholders::{placeholder, PlaceholderExpander}; use rustc_ast as ast; use rustc_ast::mut_visit::*; use rustc_ast::ptr::P; use rustc_ast::token; use rustc_ast::tokenstream::TokenStream; use rustc_ast::visit::{self, AssocCtxt, Visitor}; use rustc_ast::{AstLike, Block, Inline, ItemKind, MacArgs, MacCall}; use rustc_ast::{MacCallStmt, MacStmtStyle, MetaItemKind, ModKind, NestedMetaItem}; use rustc_ast::{NodeId, PatKind, Path, StmtKind, Unsafe}; use rustc_ast_pretty::pprust; use rustc_attr::is_builtin_attr; use rustc_data_structures::map_in_place::MapInPlace; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_data_structures::sync::Lrc; use rustc_errors::{Applicability, FatalError, PResult}; use rustc_feature::Features; use rustc_parse::parser::{ AttemptLocalParseRecovery, ForceCollect, Parser, RecoverColon, RecoverComma, }; use rustc_parse::validate_attr; use rustc_session::lint::builtin::{UNUSED_ATTRIBUTES, UNUSED_DOC_COMMENTS}; use rustc_session::lint::BuiltinLintDiagnostics; use rustc_session::parse::{feature_err, ParseSess}; use rustc_session::Limit; use rustc_span::symbol::{sym, Ident}; use rustc_span::{FileName, LocalExpnId, Span}; use smallvec::{smallvec, SmallVec}; use std::ops::DerefMut; use std::path::PathBuf; use std::rc::Rc; use std::{iter, mem}; macro_rules! ast_fragments { ( $($Kind:ident($AstTy:ty) { $kind_name:expr; $(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)? $(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident($($args:tt)*);)? fn $make_ast:ident; })* ) => { /// A fragment of AST that can be produced by a single macro expansion. /// Can also serve as an input and intermediate result for macro expansion operations. pub enum AstFragment { OptExpr(Option>), $($Kind($AstTy),)* } /// "Discriminant" of an AST fragment. #[derive(Copy, Clone, PartialEq, Eq)] pub enum AstFragmentKind { OptExpr, $($Kind,)* } impl AstFragmentKind { pub fn name(self) -> &'static str { match self { AstFragmentKind::OptExpr => "expression", $(AstFragmentKind::$Kind => $kind_name,)* } } fn make_from<'a>(self, result: Box) -> Option { match self { AstFragmentKind::OptExpr => result.make_expr().map(Some).map(AstFragment::OptExpr), $(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)* } } } impl AstFragment { pub fn add_placeholders(&mut self, placeholders: &[NodeId]) { if placeholders.is_empty() { return; } match self { $($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| { // We are repeating through arguments with `many`, to do that we have to // mention some macro variable from those arguments even if it's not used. macro _repeating($flat_map_ast_elt) {} placeholder(AstFragmentKind::$Kind, *id, None).$make_ast() })),)?)* _ => panic!("unexpected AST fragment kind") } } pub fn make_opt_expr(self) -> Option> { match self { AstFragment::OptExpr(expr) => expr, _ => panic!("AstFragment::make_* called on the wrong kind of fragment"), } } $(pub fn $make_ast(self) -> $AstTy { match self { AstFragment::$Kind(ast) => ast, _ => panic!("AstFragment::make_* called on the wrong kind of fragment"), } })* pub fn mut_visit_with(&mut self, vis: &mut F) { match self { AstFragment::OptExpr(opt_expr) => { visit_clobber(opt_expr, |opt_expr| { if let Some(expr) = opt_expr { vis.filter_map_expr(expr) } else { None } }); } $($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)* $($(AstFragment::$Kind(ast) => ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)* } } pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) { match *self { AstFragment::OptExpr(Some(ref expr)) => visitor.visit_expr(expr), AstFragment::OptExpr(None) => {} $($(AstFragment::$Kind(ref ast) => visitor.$visit_ast(ast),)?)* $($(AstFragment::$Kind(ref ast) => for ast_elt in &ast[..] { visitor.$visit_ast_elt(ast_elt, $($args)*); })?)* } } } impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> { $(fn $make_ast(self: Box>) -> Option<$AstTy> { Some(self.make(AstFragmentKind::$Kind).$make_ast()) })* } } } ast_fragments! { Expr(P) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; } Pat(P) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; } Ty(P) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; } Stmts(SmallVec<[ast::Stmt; 1]>) { "statement"; many fn flat_map_stmt; fn visit_stmt(); fn make_stmts; } Items(SmallVec<[P; 1]>) { "item"; many fn flat_map_item; fn visit_item(); fn make_items; } TraitItems(SmallVec<[P; 1]>) { "trait item"; many fn flat_map_trait_item; fn visit_assoc_item(AssocCtxt::Trait); fn make_trait_items; } ImplItems(SmallVec<[P; 1]>) { "impl item"; many fn flat_map_impl_item; fn visit_assoc_item(AssocCtxt::Impl); fn make_impl_items; } ForeignItems(SmallVec<[P; 1]>) { "foreign item"; many fn flat_map_foreign_item; fn visit_foreign_item(); fn make_foreign_items; } Arms(SmallVec<[ast::Arm; 1]>) { "match arm"; many fn flat_map_arm; fn visit_arm(); fn make_arms; } Fields(SmallVec<[ast::ExprField; 1]>) { "field expression"; many fn flat_map_expr_field; fn visit_expr_field(); fn make_expr_fields; } FieldPats(SmallVec<[ast::PatField; 1]>) { "field pattern"; many fn flat_map_pat_field; fn visit_pat_field(); fn make_pat_fields; } GenericParams(SmallVec<[ast::GenericParam; 1]>) { "generic parameter"; many fn flat_map_generic_param; fn visit_generic_param(); fn make_generic_params; } Params(SmallVec<[ast::Param; 1]>) { "function parameter"; many fn flat_map_param; fn visit_param(); fn make_params; } StructFields(SmallVec<[ast::FieldDef; 1]>) { "field"; many fn flat_map_field_def; fn visit_field_def(); fn make_field_defs; } Variants(SmallVec<[ast::Variant; 1]>) { "variant"; many fn flat_map_variant; fn visit_variant(); fn make_variants; } } pub enum SupportsMacroExpansion { No, Yes { supports_inner_attrs: bool }, } impl AstFragmentKind { crate fn dummy(self, span: Span) -> AstFragment { self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment") } pub fn supports_macro_expansion(self) -> SupportsMacroExpansion { match self { AstFragmentKind::OptExpr | AstFragmentKind::Expr | AstFragmentKind::Stmts | AstFragmentKind::Ty | AstFragmentKind::Pat => SupportsMacroExpansion::Yes { supports_inner_attrs: false }, AstFragmentKind::Items | AstFragmentKind::TraitItems | AstFragmentKind::ImplItems | AstFragmentKind::ForeignItems => { SupportsMacroExpansion::Yes { supports_inner_attrs: true } } AstFragmentKind::Arms | AstFragmentKind::Fields | AstFragmentKind::FieldPats | AstFragmentKind::GenericParams | AstFragmentKind::Params | AstFragmentKind::StructFields | AstFragmentKind::Variants => SupportsMacroExpansion::No, } } fn expect_from_annotatables>( self, items: I, ) -> AstFragment { let mut items = items.into_iter(); match self { AstFragmentKind::Arms => { AstFragment::Arms(items.map(Annotatable::expect_arm).collect()) } AstFragmentKind::Fields => { AstFragment::Fields(items.map(Annotatable::expect_expr_field).collect()) } AstFragmentKind::FieldPats => { AstFragment::FieldPats(items.map(Annotatable::expect_pat_field).collect()) } AstFragmentKind::GenericParams => { AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect()) } AstFragmentKind::Params => { AstFragment::Params(items.map(Annotatable::expect_param).collect()) } AstFragmentKind::StructFields => { AstFragment::StructFields(items.map(Annotatable::expect_field_def).collect()) } AstFragmentKind::Variants => { AstFragment::Variants(items.map(Annotatable::expect_variant).collect()) } AstFragmentKind::Items => { AstFragment::Items(items.map(Annotatable::expect_item).collect()) } AstFragmentKind::ImplItems => { AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect()) } AstFragmentKind::TraitItems => { AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect()) } AstFragmentKind::ForeignItems => { AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect()) } AstFragmentKind::Stmts => { AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect()) } AstFragmentKind::Expr => AstFragment::Expr( items.next().expect("expected exactly one expression").expect_expr(), ), AstFragmentKind::OptExpr => { AstFragment::OptExpr(items.next().map(Annotatable::expect_expr)) } AstFragmentKind::Pat | AstFragmentKind::Ty => { panic!("patterns and types aren't annotatable") } } } } pub struct Invocation { pub kind: InvocationKind, pub fragment_kind: AstFragmentKind, pub expansion_data: ExpansionData, } pub enum InvocationKind { Bang { mac: ast::MacCall, span: Span, }, Attr { attr: ast::Attribute, // Re-insertion position for inert attributes. pos: usize, item: Annotatable, // Required for resolving derive helper attributes. derives: Vec, }, Derive { path: Path, item: Annotatable, }, } impl InvocationKind { fn placeholder_visibility(&self) -> Option { // HACK: For unnamed fields placeholders should have the same visibility as the actual // fields because for tuple structs/variants resolve determines visibilities of their // constructor using these field visibilities before attributes on them are are expanded. // The assumption is that the attribute expansion cannot change field visibilities, // and it holds because only inert attributes are supported in this position. match self { InvocationKind::Attr { item: Annotatable::FieldDef(field), .. } | InvocationKind::Derive { item: Annotatable::FieldDef(field), .. } if field.ident.is_none() => { Some(field.vis.clone()) } _ => None, } } } impl Invocation { pub fn span(&self) -> Span { match &self.kind { InvocationKind::Bang { span, .. } => *span, InvocationKind::Attr { attr, .. } => attr.span, InvocationKind::Derive { path, .. } => path.span, } } } pub struct MacroExpander<'a, 'b> { pub cx: &'a mut ExtCtxt<'b>, monotonic: bool, // cf. `cx.monotonic_expander()` } impl<'a, 'b> MacroExpander<'a, 'b> { pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self { MacroExpander { cx, monotonic } } // FIXME: Avoid visiting the crate as a `Mod` item, // make crate a first class expansion target instead. pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate { let file_path = match self.cx.source_map().span_to_filename(krate.span) { FileName::Real(name) => name .into_local_path() .expect("attempting to resolve a file path in an external file"), other => PathBuf::from(other.prefer_local().to_string()), }; let dir_path = file_path.parent().unwrap_or(&file_path).to_owned(); self.cx.root_path = dir_path.clone(); self.cx.current_expansion.module = Rc::new(ModuleData { mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)], file_path_stack: vec![file_path], dir_path, }); let krate_item = AstFragment::Items(smallvec![P(ast::Item { attrs: krate.attrs, span: krate.span, kind: ast::ItemKind::Mod( Unsafe::No, ModKind::Loaded(krate.items, Inline::Yes, krate.span) ), ident: Ident::invalid(), id: ast::DUMMY_NODE_ID, vis: ast::Visibility { span: krate.span.shrink_to_lo(), kind: ast::VisibilityKind::Public, tokens: None, }, tokens: None, })]); match self.fully_expand_fragment(krate_item).make_items().pop().map(P::into_inner) { Some(ast::Item { attrs, kind: ast::ItemKind::Mod(_, ModKind::Loaded(items, ..)), .. }) => { krate.attrs = attrs; krate.items = items; } None => { // Resolution failed so we return an empty expansion krate.attrs = vec![]; krate.items = vec![]; } Some(ast::Item { span, kind, .. }) => { krate.attrs = vec![]; krate.items = vec![]; self.cx.span_err( span, &format!( "expected crate top-level item to be a module after macro expansion, found {} {}", kind.article(), kind.descr() ), ); // FIXME: this workaround issue #84569 FatalError.raise(); } }; self.cx.trace_macros_diag(); krate } // Recursively expand all macro invocations in this AST fragment. pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment { let orig_expansion_data = self.cx.current_expansion.clone(); let orig_force_mode = self.cx.force_mode; // Collect all macro invocations and replace them with placeholders. let (mut fragment_with_placeholders, mut invocations) = self.collect_invocations(input_fragment, &[]); // Optimization: if we resolve all imports now, // we'll be able to immediately resolve most of imported macros. self.resolve_imports(); // Resolve paths in all invocations and produce output expanded fragments for them, but // do not insert them into our input AST fragment yet, only store in `expanded_fragments`. // The output fragments also go through expansion recursively until no invocations are left. // Unresolved macros produce dummy outputs as a recovery measure. invocations.reverse(); let mut expanded_fragments = Vec::new(); let mut undetermined_invocations = Vec::new(); let (mut progress, mut force) = (false, !self.monotonic); loop { let (invoc, ext) = if let Some(invoc) = invocations.pop() { invoc } else { self.resolve_imports(); if undetermined_invocations.is_empty() { break; } invocations = mem::take(&mut undetermined_invocations); force = !mem::replace(&mut progress, false); if force && self.monotonic { self.cx.sess.delay_span_bug( invocations.last().unwrap().0.span(), "expansion entered force mode without producing any errors", ); } continue; }; let ext = match ext { Some(ext) => ext, None => { let eager_expansion_root = if self.monotonic { invoc.expansion_data.id } else { orig_expansion_data.id }; match self.cx.resolver.resolve_macro_invocation( &invoc, eager_expansion_root, force, ) { Ok(ext) => ext, Err(Indeterminate) => { // Cannot resolve, will retry this invocation later. undetermined_invocations.push((invoc, None)); continue; } } } }; let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data; let depth = depth - orig_expansion_data.depth; self.cx.current_expansion = invoc.expansion_data.clone(); self.cx.force_mode = force; let fragment_kind = invoc.fragment_kind; let (expanded_fragment, new_invocations) = match self.expand_invoc(invoc, &ext.kind) { ExpandResult::Ready(fragment) => { let mut derive_invocations = Vec::new(); let derive_placeholders = self .cx .resolver .take_derive_resolutions(expn_id) .map(|derives| { derive_invocations.reserve(derives.len()); derives .into_iter() .map(|(path, item, _exts)| { // FIXME: Consider using the derive resolutions (`_exts`) // instead of enqueuing the derives to be resolved again later. let expn_id = LocalExpnId::fresh_empty(); derive_invocations.push(( Invocation { kind: InvocationKind::Derive { path, item }, fragment_kind, expansion_data: ExpansionData { id: expn_id, ..self.cx.current_expansion.clone() }, }, None, )); NodeId::placeholder_from_expn_id(expn_id) }) .collect::>() }) .unwrap_or_default(); let (fragment, collected_invocations) = self.collect_invocations(fragment, &derive_placeholders); // We choose to expand any derive invocations associated with this macro invocation // *before* any macro invocations collected from the output fragment derive_invocations.extend(collected_invocations); (fragment, derive_invocations) } ExpandResult::Retry(invoc) => { if force { self.cx.span_bug( invoc.span(), "expansion entered force mode but is still stuck", ); } else { // Cannot expand, will retry this invocation later. undetermined_invocations.push((invoc, Some(ext))); continue; } } }; progress = true; if expanded_fragments.len() < depth { expanded_fragments.push(Vec::new()); } expanded_fragments[depth - 1].push((expn_id, expanded_fragment)); invocations.extend(new_invocations.into_iter().rev()); } self.cx.current_expansion = orig_expansion_data; self.cx.force_mode = orig_force_mode; // Finally incorporate all the expanded macros into the input AST fragment. let mut placeholder_expander = PlaceholderExpander::default(); while let Some(expanded_fragments) = expanded_fragments.pop() { for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() { placeholder_expander .add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment); } } fragment_with_placeholders.mut_visit_with(&mut placeholder_expander); fragment_with_placeholders } fn resolve_imports(&mut self) { if self.monotonic { self.cx.resolver.resolve_imports(); } } /// Collects all macro invocations reachable at this time in this AST fragment, and replace /// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s. /// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and /// prepares data for resolving paths of macro invocations. fn collect_invocations( &mut self, mut fragment: AstFragment, extra_placeholders: &[NodeId], ) -> (AstFragment, Vec<(Invocation, Option>)>) { // Resolve `$crate`s in the fragment for pretty-printing. self.cx.resolver.resolve_dollar_crates(); let mut invocations = { let mut collector = InvocationCollector { // Non-derive macro invocations cannot see the results of cfg expansion - they // will either be removed along with the item, or invoked before the cfg/cfg_attr // attribute is expanded. Therefore, we don't need to configure the tokens // Derive macros *can* see the results of cfg-expansion - they are handled // specially in `fully_expand_fragment` cfg: StripUnconfigured { sess: &self.cx.sess, features: self.cx.ecfg.features, config_tokens: false, }, cx: self.cx, invocations: Vec::new(), monotonic: self.monotonic, }; fragment.mut_visit_with(&mut collector); fragment.add_placeholders(extra_placeholders); collector.invocations }; if self.monotonic { self.cx .resolver .visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment); if self.cx.sess.opts.debugging_opts.incremental_relative_spans { for (invoc, _) in invocations.iter_mut() { let expn_id = invoc.expansion_data.id; let parent_def = self.cx.resolver.invocation_parent(expn_id); let span = match &mut invoc.kind { InvocationKind::Bang { ref mut span, .. } => span, InvocationKind::Attr { attr, .. } => &mut attr.span, InvocationKind::Derive { path, .. } => &mut path.span, }; *span = span.with_parent(Some(parent_def)); } } } (fragment, invocations) } fn error_recursion_limit_reached(&mut self) { let expn_data = self.cx.current_expansion.id.expn_data(); let suggested_limit = self.cx.ecfg.recursion_limit * 2; self.cx .struct_span_err( expn_data.call_site, &format!("recursion limit reached while expanding `{}`", expn_data.kind.descr()), ) .help(&format!( "consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate (`{}`)", suggested_limit, self.cx.ecfg.crate_name, )) .emit(); self.cx.trace_macros_diag(); } /// A macro's expansion does not fit in this fragment kind. /// For example, a non-type macro in a type position. fn error_wrong_fragment_kind(&mut self, kind: AstFragmentKind, mac: &ast::MacCall, span: Span) { let msg = format!( "non-{kind} macro in {kind} position: {path}", kind = kind.name(), path = pprust::path_to_string(&mac.path), ); self.cx.span_err(span, &msg); self.cx.trace_macros_diag(); } fn expand_invoc( &mut self, invoc: Invocation, ext: &SyntaxExtensionKind, ) -> ExpandResult { let recursion_limit = self.cx.reduced_recursion_limit.unwrap_or(self.cx.ecfg.recursion_limit); if !recursion_limit.value_within_limit(self.cx.current_expansion.depth) { if self.cx.reduced_recursion_limit.is_none() { self.error_recursion_limit_reached(); } // Reduce the recursion limit by half each time it triggers. self.cx.reduced_recursion_limit = Some(recursion_limit / 2); return ExpandResult::Ready(invoc.fragment_kind.dummy(invoc.span())); } let (fragment_kind, span) = (invoc.fragment_kind, invoc.span()); ExpandResult::Ready(match invoc.kind { InvocationKind::Bang { mac, .. } => match ext { SyntaxExtensionKind::Bang(expander) => { let tok_result = match expander.expand(self.cx, span, mac.args.inner_tokens()) { Err(_) => return ExpandResult::Ready(fragment_kind.dummy(span)), Ok(ts) => ts, }; self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span) } SyntaxExtensionKind::LegacyBang(expander) => { let prev = self.cx.current_expansion.prior_type_ascription; self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription; let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens()); let result = if let Some(result) = fragment_kind.make_from(tok_result) { result } else { self.error_wrong_fragment_kind(fragment_kind, &mac, span); fragment_kind.dummy(span) }; self.cx.current_expansion.prior_type_ascription = prev; result } _ => unreachable!(), }, InvocationKind::Attr { attr, pos, mut item, derives } => match ext { SyntaxExtensionKind::Attr(expander) => { self.gate_proc_macro_input(&item); self.gate_proc_macro_attr_item(span, &item); let mut fake_tokens = false; if let Annotatable::Item(item_inner) = &item { if let ItemKind::Mod(_, mod_kind) = &item_inner.kind { // FIXME: Collect tokens and use them instead of generating // fake ones. These are unstable, so it needs to be // fixed prior to stabilization // Fake tokens when we are invoking an inner attribute, and: fake_tokens = matches!(attr.style, ast::AttrStyle::Inner) && // We are invoking an attribute on the crate root, or an outline // module (item_inner.ident.name.is_empty() || !matches!(mod_kind, ast::ModKind::Loaded(_, Inline::Yes, _))); } } let tokens = if fake_tokens { rustc_parse::fake_token_stream( &self.cx.sess.parse_sess, &item.into_nonterminal(), ) } else { item.into_tokens(&self.cx.sess.parse_sess) }; let attr_item = attr.unwrap_normal_item(); if let MacArgs::Eq(..) = attr_item.args { self.cx.span_err(span, "key-value macro attributes are not supported"); } let inner_tokens = attr_item.args.inner_tokens(); let tok_result = match expander.expand(self.cx, span, inner_tokens, tokens) { Err(_) => return ExpandResult::Ready(fragment_kind.dummy(span)), Ok(ts) => ts, }; self.parse_ast_fragment(tok_result, fragment_kind, &attr_item.path, span) } SyntaxExtensionKind::LegacyAttr(expander) => { match validate_attr::parse_meta(&self.cx.sess.parse_sess, &attr) { Ok(meta) => { let items = match expander.expand(self.cx, span, &meta, item) { ExpandResult::Ready(items) => items, ExpandResult::Retry(item) => { // Reassemble the original invocation for retrying. return ExpandResult::Retry(Invocation { kind: InvocationKind::Attr { attr, pos, item, derives }, ..invoc }); } }; if fragment_kind == AstFragmentKind::Expr && items.is_empty() { let msg = "removing an expression is not supported in this position"; self.cx.span_err(span, msg); fragment_kind.dummy(span) } else { fragment_kind.expect_from_annotatables(items) } } Err(mut err) => { err.emit(); fragment_kind.dummy(span) } } } SyntaxExtensionKind::NonMacroAttr => { self.cx.expanded_inert_attrs.mark(&attr); item.visit_attrs(|attrs| attrs.insert(pos, attr)); fragment_kind.expect_from_annotatables(iter::once(item)) } _ => unreachable!(), }, InvocationKind::Derive { path, item } => match ext { SyntaxExtensionKind::Derive(expander) | SyntaxExtensionKind::LegacyDerive(expander) => { if let SyntaxExtensionKind::Derive(..) = ext { self.gate_proc_macro_input(&item); } let meta = ast::MetaItem { kind: ast::MetaItemKind::Word, span, path }; let items = match expander.expand(self.cx, span, &meta, item) { ExpandResult::Ready(items) => items, ExpandResult::Retry(item) => { // Reassemble the original invocation for retrying. return ExpandResult::Retry(Invocation { kind: InvocationKind::Derive { path: meta.path, item }, ..invoc }); } }; fragment_kind.expect_from_annotatables(items) } _ => unreachable!(), }, }) } fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) { let kind = match item { Annotatable::Item(_) | Annotatable::TraitItem(_) | Annotatable::ImplItem(_) | Annotatable::ForeignItem(_) => return, Annotatable::Stmt(stmt) => { // Attributes are stable on item statements, // but unstable on all other kinds of statements if stmt.is_item() { return; } "statements" } Annotatable::Expr(_) => "expressions", Annotatable::Arm(..) | Annotatable::ExprField(..) | Annotatable::PatField(..) | Annotatable::GenericParam(..) | Annotatable::Param(..) | Annotatable::FieldDef(..) | Annotatable::Variant(..) => panic!("unexpected annotatable"), }; if self.cx.ecfg.proc_macro_hygiene() { return; } feature_err( &self.cx.sess.parse_sess, sym::proc_macro_hygiene, span, &format!("custom attributes cannot be applied to {}", kind), ) .emit(); } fn gate_proc_macro_input(&self, annotatable: &Annotatable) { struct GateProcMacroInput<'a> { parse_sess: &'a ParseSess, } impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> { fn visit_item(&mut self, item: &'ast ast::Item) { match &item.kind { ast::ItemKind::Mod(_, mod_kind) if !matches!(mod_kind, ModKind::Loaded(_, Inline::Yes, _)) => { feature_err( self.parse_sess, sym::proc_macro_hygiene, item.span, "non-inline modules in proc macro input are unstable", ) .emit(); } _ => {} } visit::walk_item(self, item); } } if !self.cx.ecfg.proc_macro_hygiene() { annotatable .visit_with(&mut GateProcMacroInput { parse_sess: &self.cx.sess.parse_sess }); } } fn parse_ast_fragment( &mut self, toks: TokenStream, kind: AstFragmentKind, path: &Path, span: Span, ) -> AstFragment { let mut parser = self.cx.new_parser_from_tts(toks); match parse_ast_fragment(&mut parser, kind) { Ok(fragment) => { ensure_complete_parse(&mut parser, path, kind.name(), span); fragment } Err(mut err) => { if err.span.is_dummy() { err.set_span(span); } annotate_err_with_kind(&mut err, kind, span); err.emit(); self.cx.trace_macros_diag(); kind.dummy(span) } } } } pub fn parse_ast_fragment<'a>( this: &mut Parser<'a>, kind: AstFragmentKind, ) -> PResult<'a, AstFragment> { Ok(match kind { AstFragmentKind::Items => { let mut items = SmallVec::new(); while let Some(item) = this.parse_item(ForceCollect::No)? { items.push(item); } AstFragment::Items(items) } AstFragmentKind::TraitItems => { let mut items = SmallVec::new(); while let Some(item) = this.parse_trait_item(ForceCollect::No)? { items.extend(item); } AstFragment::TraitItems(items) } AstFragmentKind::ImplItems => { let mut items = SmallVec::new(); while let Some(item) = this.parse_impl_item(ForceCollect::No)? { items.extend(item); } AstFragment::ImplItems(items) } AstFragmentKind::ForeignItems => { let mut items = SmallVec::new(); while let Some(item) = this.parse_foreign_item(ForceCollect::No)? { items.extend(item); } AstFragment::ForeignItems(items) } AstFragmentKind::Stmts => { let mut stmts = SmallVec::new(); // Won't make progress on a `}`. while this.token != token::Eof && this.token != token::CloseDelim(token::Brace) { if let Some(stmt) = this.parse_full_stmt(AttemptLocalParseRecovery::Yes)? { stmts.push(stmt); } } AstFragment::Stmts(stmts) } AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?), AstFragmentKind::OptExpr => { if this.token != token::Eof { AstFragment::OptExpr(Some(this.parse_expr()?)) } else { AstFragment::OptExpr(None) } } AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?), AstFragmentKind::Pat => AstFragment::Pat(this.parse_pat_allow_top_alt( None, RecoverComma::No, RecoverColon::Yes, )?), AstFragmentKind::Arms | AstFragmentKind::Fields | AstFragmentKind::FieldPats | AstFragmentKind::GenericParams | AstFragmentKind::Params | AstFragmentKind::StructFields | AstFragmentKind::Variants => panic!("unexpected AST fragment kind"), }) } pub fn ensure_complete_parse<'a>( this: &mut Parser<'a>, macro_path: &Path, kind_name: &str, span: Span, ) { if this.token != token::Eof { let token = pprust::token_to_string(&this.token); let msg = format!("macro expansion ignores token `{}` and any following", token); // Avoid emitting backtrace info twice. let def_site_span = this.token.span.with_ctxt(SyntaxContext::root()); let mut err = this.struct_span_err(def_site_span, &msg); err.span_label(span, "caused by the macro expansion here"); let msg = format!( "the usage of `{}!` is likely invalid in {} context", pprust::path_to_string(macro_path), kind_name, ); err.note(&msg); let semi_span = this.sess.source_map().next_point(span); let semi_full_span = semi_span.to(this.sess.source_map().next_point(semi_span)); match this.sess.source_map().span_to_snippet(semi_full_span) { Ok(ref snippet) if &snippet[..] != ";" && kind_name == "expression" => { err.span_suggestion( semi_span, "you might be missing a semicolon here", ";".to_owned(), Applicability::MaybeIncorrect, ); } _ => {} } err.emit(); } } struct InvocationCollector<'a, 'b> { cx: &'a mut ExtCtxt<'b>, cfg: StripUnconfigured<'a>, invocations: Vec<(Invocation, Option>)>, monotonic: bool, } impl<'a, 'b> InvocationCollector<'a, 'b> { fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment { let expn_id = LocalExpnId::fresh_empty(); let vis = kind.placeholder_visibility(); self.invocations.push(( Invocation { kind, fragment_kind, expansion_data: ExpansionData { id: expn_id, depth: self.cx.current_expansion.depth + 1, ..self.cx.current_expansion.clone() }, }, None, )); placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis) } fn collect_bang( &mut self, mac: ast::MacCall, span: Span, kind: AstFragmentKind, ) -> AstFragment { self.collect(kind, InvocationKind::Bang { mac, span }) } fn collect_attr( &mut self, (attr, pos, derives): (ast::Attribute, usize, Vec), item: Annotatable, kind: AstFragmentKind, ) -> AstFragment { self.collect(kind, InvocationKind::Attr { attr, pos, item, derives }) } /// If `item` is an attribute invocation, remove the attribute and return it together with /// its position and derives following it. We have to collect the derives in order to resolve /// legacy derive helpers (helpers written before derives that introduce them). fn take_first_attr( &mut self, item: &mut impl AstLike, ) -> Option<(ast::Attribute, usize, Vec)> { let mut attr = None; item.visit_attrs(|attrs| { attr = attrs .iter() .position(|a| !self.cx.expanded_inert_attrs.is_marked(a) && !is_builtin_attr(a)) .map(|attr_pos| { let attr = attrs.remove(attr_pos); let following_derives = attrs[attr_pos..] .iter() .filter(|a| a.has_name(sym::derive)) .flat_map(|a| a.meta_item_list().unwrap_or_default()) .filter_map(|nested_meta| match nested_meta { NestedMetaItem::MetaItem(ast::MetaItem { kind: MetaItemKind::Word, path, .. }) => Some(path), _ => None, }) .collect(); (attr, attr_pos, following_derives) }) }); attr } fn take_stmt_bang( &mut self, stmt: ast::Stmt, ) -> Result<(bool, MacCall, Vec), ast::Stmt> { match stmt.kind { StmtKind::MacCall(mac) => { let MacCallStmt { mac, style, attrs, .. } = mac.into_inner(); Ok((style == MacStmtStyle::Semicolon, mac, attrs.into())) } StmtKind::Item(ref item) if matches!(item.kind, ItemKind::MacCall(..)) => { match stmt.kind { StmtKind::Item(item) => match item.into_inner() { ast::Item { kind: ItemKind::MacCall(mac), attrs, .. } => { Ok((mac.args.need_semicolon(), mac, attrs)) } _ => unreachable!(), }, _ => unreachable!(), } } StmtKind::Semi(ref expr) if matches!(expr.kind, ast::ExprKind::MacCall(..)) => { match stmt.kind { StmtKind::Semi(expr) => match expr.into_inner() { ast::Expr { kind: ast::ExprKind::MacCall(mac), attrs, .. } => { Ok((mac.args.need_semicolon(), mac, attrs.into())) } _ => unreachable!(), }, _ => unreachable!(), } } StmtKind::Local(..) | StmtKind::Empty | StmtKind::Item(..) | StmtKind::Semi(..) => { Err(stmt) } StmtKind::Expr(..) => unreachable!(), } } fn configure(&mut self, node: T) -> Option { self.cfg.configure(node) } // Detect use of feature-gated or invalid attributes on macro invocations // since they will not be detected after macro expansion. fn check_attributes(&self, attrs: &[ast::Attribute], call: &MacCall) { let features = self.cx.ecfg.features.unwrap(); let mut attrs = attrs.iter().peekable(); let mut span: Option = None; while let Some(attr) = attrs.next() { rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.sess, features); validate_attr::check_meta(&self.cx.sess.parse_sess, attr); let current_span = if let Some(sp) = span { sp.to(attr.span) } else { attr.span }; span = Some(current_span); if attrs.peek().map_or(false, |next_attr| next_attr.doc_str().is_some()) { continue; } if attr.is_doc_comment() { self.cx.sess.parse_sess.buffer_lint_with_diagnostic( &UNUSED_DOC_COMMENTS, current_span, self.cx.current_expansion.lint_node_id, "unused doc comment", BuiltinLintDiagnostics::UnusedDocComment(attr.span), ); } else if rustc_attr::is_builtin_attr(attr) { let attr_name = attr.ident().unwrap().name; // `#[cfg]` and `#[cfg_attr]` are special - they are // eagerly evaluated. if attr_name != sym::cfg && attr_name != sym::cfg_attr { self.cx.sess.parse_sess.buffer_lint_with_diagnostic( &UNUSED_ATTRIBUTES, attr.span, self.cx.current_expansion.lint_node_id, &format!("unused attribute `{}`", attr_name), BuiltinLintDiagnostics::UnusedBuiltinAttribute { attr_name, macro_name: pprust::path_to_string(&call.path), invoc_span: call.path.span, }, ); } } } } } /// Wraps a call to `noop_visit_*` / `noop_flat_map_*` /// for an AST node that supports attributes /// (see the `Annotatable` enum) /// This method assigns a `NodeId`, and sets that `NodeId` /// as our current 'lint node id'. If a macro call is found /// inside this AST node, we will use this AST node's `NodeId` /// to emit lints associated with that macro (allowing /// `#[allow]` / `#[deny]` to be applied close to /// the macro invocation). /// /// Do *not* call this for a macro AST node /// (e.g. `ExprKind::MacCall`) - we cannot emit lints /// at these AST nodes, since they are removed and /// replaced with the result of macro expansion. /// /// All other `NodeId`s are assigned by `visit_id`. /// * `self` is the 'self' parameter for the current method, /// * `id` is a mutable reference to the `NodeId` field /// of the current AST node. /// * `closure` is a closure that executes the /// `noop_visit_*` / `noop_flat_map_*` method /// for the current AST node. macro_rules! assign_id { ($self:ident, $id:expr, $closure:expr) => {{ let old_id = $self.cx.current_expansion.lint_node_id; if $self.monotonic { debug_assert_eq!(*$id, ast::DUMMY_NODE_ID); let new_id = $self.cx.resolver.next_node_id(); *$id = new_id; $self.cx.current_expansion.lint_node_id = new_id; } let ret = ($closure)(); $self.cx.current_expansion.lint_node_id = old_id; ret }}; } impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> { fn visit_expr(&mut self, expr: &mut P) { self.cfg.configure_expr(expr); visit_clobber(expr.deref_mut(), |mut expr| { if let Some(attr) = self.take_first_attr(&mut expr) { // Collect the invoc regardless of whether or not attributes are permitted here // expansion will eat the attribute so it won't error later. self.cfg.maybe_emit_expr_attr_err(&attr.0); // AstFragmentKind::Expr requires the macro to emit an expression. return self .collect_attr(attr, Annotatable::Expr(P(expr)), AstFragmentKind::Expr) .make_expr() .into_inner(); } if let ast::ExprKind::MacCall(mac) = expr.kind { self.check_attributes(&expr.attrs, &mac); self.collect_bang(mac, expr.span, AstFragmentKind::Expr).make_expr().into_inner() } else { assign_id!(self, &mut expr.id, || { ensure_sufficient_stack(|| noop_visit_expr(&mut expr, self)); }); expr } }); } fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> { let mut arm = configure!(self, arm); if let Some(attr) = self.take_first_attr(&mut arm) { return self .collect_attr(attr, Annotatable::Arm(arm), AstFragmentKind::Arms) .make_arms(); } assign_id!(self, &mut arm.id, || noop_flat_map_arm(arm, self)) } fn flat_map_expr_field(&mut self, field: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> { let mut field = configure!(self, field); if let Some(attr) = self.take_first_attr(&mut field) { return self .collect_attr(attr, Annotatable::ExprField(field), AstFragmentKind::Fields) .make_expr_fields(); } assign_id!(self, &mut field.id, || noop_flat_map_expr_field(field, self)) } fn flat_map_pat_field(&mut self, fp: ast::PatField) -> SmallVec<[ast::PatField; 1]> { let mut fp = configure!(self, fp); if let Some(attr) = self.take_first_attr(&mut fp) { return self .collect_attr(attr, Annotatable::PatField(fp), AstFragmentKind::FieldPats) .make_pat_fields(); } assign_id!(self, &mut fp.id, || noop_flat_map_pat_field(fp, self)) } fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> { let mut p = configure!(self, p); if let Some(attr) = self.take_first_attr(&mut p) { return self .collect_attr(attr, Annotatable::Param(p), AstFragmentKind::Params) .make_params(); } assign_id!(self, &mut p.id, || noop_flat_map_param(p, self)) } fn flat_map_field_def(&mut self, sf: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> { let mut sf = configure!(self, sf); if let Some(attr) = self.take_first_attr(&mut sf) { return self .collect_attr(attr, Annotatable::FieldDef(sf), AstFragmentKind::StructFields) .make_field_defs(); } assign_id!(self, &mut sf.id, || noop_flat_map_field_def(sf, self)) } fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> { let mut variant = configure!(self, variant); if let Some(attr) = self.take_first_attr(&mut variant) { return self .collect_attr(attr, Annotatable::Variant(variant), AstFragmentKind::Variants) .make_variants(); } assign_id!(self, &mut variant.id, || noop_flat_map_variant(variant, self)) } fn filter_map_expr(&mut self, expr: P) -> Option> { let expr = configure!(self, expr); expr.filter_map(|mut expr| { if let Some(attr) = self.take_first_attr(&mut expr) { self.cfg.maybe_emit_expr_attr_err(&attr.0); return self .collect_attr(attr, Annotatable::Expr(P(expr)), AstFragmentKind::OptExpr) .make_opt_expr() .map(|expr| expr.into_inner()); } if let ast::ExprKind::MacCall(mac) = expr.kind { self.check_attributes(&expr.attrs, &mac); self.collect_bang(mac, expr.span, AstFragmentKind::OptExpr) .make_opt_expr() .map(|expr| expr.into_inner()) } else { assign_id!(self, &mut expr.id, || { Some({ noop_visit_expr(&mut expr, self); expr }) }) } }) } fn visit_pat(&mut self, pat: &mut P) { match pat.kind { PatKind::MacCall(_) => {} _ => return noop_visit_pat(pat, self), } visit_clobber(pat, |mut pat| match mem::replace(&mut pat.kind, PatKind::Wild) { PatKind::MacCall(mac) => { self.collect_bang(mac, pat.span, AstFragmentKind::Pat).make_pat() } _ => unreachable!(), }); } fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> { let mut stmt = configure!(self, stmt); // We pull macro invocations (both attributes and fn-like macro calls) out of their // `StmtKind`s and treat them as statement macro invocations, not as items or expressions. // FIXME: invocations in semicolon-less expressions positions are expanded as expressions, // changing that requires some compatibility measures. let mut stmt = if !stmt.is_expr() { if let Some(attr) = self.take_first_attr(&mut stmt) { return self .collect_attr(attr, Annotatable::Stmt(P(stmt)), AstFragmentKind::Stmts) .make_stmts(); } let span = stmt.span; match self.take_stmt_bang(stmt) { Ok((add_semicolon, mac, attrs)) => { self.check_attributes(&attrs, &mac); let mut stmts = self.collect_bang(mac, span, AstFragmentKind::Stmts).make_stmts(); // If this is a macro invocation with a semicolon, then apply that // semicolon to the final statement produced by expansion. if add_semicolon { if let Some(stmt) = stmts.pop() { stmts.push(stmt.add_trailing_semicolon()); } } return stmts; } Err(stmt) => stmt, } } else { stmt }; // The only way that we can end up with a `MacCall` expression statement, // (as opposed to a `StmtKind::MacCall`) is if we have a macro as the // traiing expression in a block (e.g. `fn foo() { my_macro!() }`). // Record this information, so that we can report a more specific // `SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` lint if needed. // See #78991 for an investigation of treating macros in this position // as statements, rather than expressions, during parsing. let res = match &stmt.kind { StmtKind::Expr(expr) if matches!(**expr, ast::Expr { kind: ast::ExprKind::MacCall(..), .. }) => { self.cx.current_expansion.is_trailing_mac = true; // Don't use `assign_id` for this statement - it may get removed // entirely due to a `#[cfg]` on the contained expression noop_flat_map_stmt(stmt, self) } _ => assign_id!(self, &mut stmt.id, || noop_flat_map_stmt(stmt, self)), }; self.cx.current_expansion.is_trailing_mac = false; res } fn visit_block(&mut self, block: &mut P) { let orig_dir_ownership = mem::replace( &mut self.cx.current_expansion.dir_ownership, DirOwnership::UnownedViaBlock, ); noop_visit_block(block, self); self.cx.current_expansion.dir_ownership = orig_dir_ownership; } fn flat_map_item(&mut self, item: P) -> SmallVec<[P; 1]> { let mut item = configure!(self, item); if let Some(attr) = self.take_first_attr(&mut item) { return self .collect_attr(attr, Annotatable::Item(item), AstFragmentKind::Items) .make_items(); } let mut attrs = mem::take(&mut item.attrs); // We do this to please borrowck. let ident = item.ident; let span = item.span; match item.kind { ast::ItemKind::MacCall(ref mac) => { self.check_attributes(&attrs, &mac); item.attrs = attrs; item.and_then(|item| match item.kind { ItemKind::MacCall(mac) => { self.collect_bang(mac, span, AstFragmentKind::Items).make_items() } _ => unreachable!(), }) } ast::ItemKind::Mod(_, ref mut mod_kind) if ident != Ident::invalid() => { let (file_path, dir_path, dir_ownership) = match mod_kind { ModKind::Loaded(_, inline, _) => { // Inline `mod foo { ... }`, but we still need to push directories. let (dir_path, dir_ownership) = mod_dir_path( &self.cx.sess, ident, &attrs, &self.cx.current_expansion.module, self.cx.current_expansion.dir_ownership, *inline, ); item.attrs = attrs; (None, dir_path, dir_ownership) } ModKind::Unloaded => { // We have an outline `mod foo;` so we need to parse the file. let old_attrs_len = attrs.len(); let ParsedExternalMod { mut items, inner_span, file_path, dir_path, dir_ownership, } = parse_external_mod( &self.cx.sess, ident, span, &self.cx.current_expansion.module, self.cx.current_expansion.dir_ownership, &mut attrs, ); if let Some(extern_mod_loaded) = self.cx.extern_mod_loaded { (attrs, items) = extern_mod_loaded(ident, attrs, items, inner_span); } *mod_kind = ModKind::Loaded(items, Inline::No, inner_span); item.attrs = attrs; if item.attrs.len() > old_attrs_len { // If we loaded an out-of-line module and added some inner attributes, // then we need to re-configure it and re-collect attributes for // resolution and expansion. item = configure!(self, item); if let Some(attr) = self.take_first_attr(&mut item) { return self .collect_attr( attr, Annotatable::Item(item), AstFragmentKind::Items, ) .make_items(); } } (Some(file_path), dir_path, dir_ownership) } }; // Set the module info before we flat map. let mut module = self.cx.current_expansion.module.with_dir_path(dir_path); module.mod_path.push(ident); if let Some(file_path) = file_path { module.file_path_stack.push(file_path); } let orig_module = mem::replace(&mut self.cx.current_expansion.module, Rc::new(module)); let orig_dir_ownership = mem::replace(&mut self.cx.current_expansion.dir_ownership, dir_ownership); let result = assign_id!(self, &mut item.id, || noop_flat_map_item(item, self)); // Restore the module info. self.cx.current_expansion.dir_ownership = orig_dir_ownership; self.cx.current_expansion.module = orig_module; result } _ => { item.attrs = attrs; // The crate root is special - don't assign an ID to it. if !(matches!(item.kind, ast::ItemKind::Mod(..)) && ident == Ident::invalid()) { assign_id!(self, &mut item.id, || noop_flat_map_item(item, self)) } else { noop_flat_map_item(item, self) } } } } fn flat_map_trait_item(&mut self, item: P) -> SmallVec<[P; 1]> { let mut item = configure!(self, item); if let Some(attr) = self.take_first_attr(&mut item) { return self .collect_attr(attr, Annotatable::TraitItem(item), AstFragmentKind::TraitItems) .make_trait_items(); } match item.kind { ast::AssocItemKind::MacCall(ref mac) => { self.check_attributes(&item.attrs, &mac); item.and_then(|item| match item.kind { ast::AssocItemKind::MacCall(mac) => self .collect_bang(mac, item.span, AstFragmentKind::TraitItems) .make_trait_items(), _ => unreachable!(), }) } _ => { assign_id!(self, &mut item.id, || noop_flat_map_assoc_item(item, self)) } } } fn flat_map_impl_item(&mut self, item: P) -> SmallVec<[P; 1]> { let mut item = configure!(self, item); if let Some(attr) = self.take_first_attr(&mut item) { return self .collect_attr(attr, Annotatable::ImplItem(item), AstFragmentKind::ImplItems) .make_impl_items(); } match item.kind { ast::AssocItemKind::MacCall(ref mac) => { self.check_attributes(&item.attrs, &mac); item.and_then(|item| match item.kind { ast::AssocItemKind::MacCall(mac) => self .collect_bang(mac, item.span, AstFragmentKind::ImplItems) .make_impl_items(), _ => unreachable!(), }) } _ => { assign_id!(self, &mut item.id, || noop_flat_map_assoc_item(item, self)) } } } fn visit_ty(&mut self, ty: &mut P) { match ty.kind { ast::TyKind::MacCall(_) => {} _ => return noop_visit_ty(ty, self), }; visit_clobber(ty, |mut ty| match mem::replace(&mut ty.kind, ast::TyKind::Err) { ast::TyKind::MacCall(mac) => { self.collect_bang(mac, ty.span, AstFragmentKind::Ty).make_ty() } _ => unreachable!(), }); } fn flat_map_foreign_item( &mut self, foreign_item: P, ) -> SmallVec<[P; 1]> { let mut foreign_item = configure!(self, foreign_item); if let Some(attr) = self.take_first_attr(&mut foreign_item) { return self .collect_attr( attr, Annotatable::ForeignItem(foreign_item), AstFragmentKind::ForeignItems, ) .make_foreign_items(); } match foreign_item.kind { ast::ForeignItemKind::MacCall(ref mac) => { self.check_attributes(&foreign_item.attrs, &mac); foreign_item.and_then(|item| match item.kind { ast::ForeignItemKind::MacCall(mac) => self .collect_bang(mac, item.span, AstFragmentKind::ForeignItems) .make_foreign_items(), _ => unreachable!(), }) } _ => { assign_id!(self, &mut foreign_item.id, || noop_flat_map_foreign_item( foreign_item, self )) } } } fn flat_map_generic_param( &mut self, param: ast::GenericParam, ) -> SmallVec<[ast::GenericParam; 1]> { let mut param = configure!(self, param); if let Some(attr) = self.take_first_attr(&mut param) { return self .collect_attr( attr, Annotatable::GenericParam(param), AstFragmentKind::GenericParams, ) .make_generic_params(); } assign_id!(self, &mut param.id, || noop_flat_map_generic_param(param, self)) } fn visit_id(&mut self, id: &mut ast::NodeId) { // We may have already assigned a `NodeId` // by calling `assign_id` if self.monotonic && *id == ast::DUMMY_NODE_ID { *id = self.cx.resolver.next_node_id(); } } } pub struct ExpansionConfig<'feat> { pub crate_name: String, pub features: Option<&'feat Features>, pub recursion_limit: Limit, pub trace_mac: bool, pub should_test: bool, // If false, strip `#[test]` nodes pub span_debug: bool, // If true, use verbose debugging for `proc_macro::Span` pub proc_macro_backtrace: bool, // If true, show backtraces for proc-macro panics } impl<'feat> ExpansionConfig<'feat> { pub fn default(crate_name: String) -> ExpansionConfig<'static> { ExpansionConfig { crate_name, features: None, recursion_limit: Limit::new(1024), trace_mac: false, should_test: false, span_debug: false, proc_macro_backtrace: false, } } fn proc_macro_hygiene(&self) -> bool { self.features.map_or(false, |features| features.proc_macro_hygiene) } }