// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use T = self::inst::T; use from_str::FromStr; use num::{ToStrRadix, FromStrRadix}; use num::{Zero, One, strconv}; use prelude::*; pub use cmp::{min, max}; pub static bits : uint = inst::bits; pub static bytes : uint = (inst::bits / 8); pub static min_value: T = (-1 as T) << (bits - 1); pub static max_value: T = min_value - 1 as T; #[inline(always)] pub fn add(x: T, y: T) -> T { x + y } #[inline(always)] pub fn sub(x: T, y: T) -> T { x - y } #[inline(always)] pub fn mul(x: T, y: T) -> T { x * y } #[inline(always)] pub fn quot(x: T, y: T) -> T { x / y } /// /// Returns the remainder of y / x. /// /// # Examples /// ~~~ /// assert!(int::rem(5 / 2) == 1); /// ~~~ /// /// When faced with negative numbers, the result copies the sign of the /// dividend. /// /// ~~~ /// assert!(int::rem(2 / -3) == 2); /// ~~~ /// /// ~~~ /// assert!(int::rem(-2 / 3) == -2); /// ~~~ /// /// #[inline(always)] pub fn rem(x: T, y: T) -> T { x % y } #[inline(always)] pub fn lt(x: T, y: T) -> bool { x < y } #[inline(always)] pub fn le(x: T, y: T) -> bool { x <= y } #[inline(always)] pub fn eq(x: T, y: T) -> bool { x == y } #[inline(always)] pub fn ne(x: T, y: T) -> bool { x != y } #[inline(always)] pub fn ge(x: T, y: T) -> bool { x >= y } #[inline(always)] pub fn gt(x: T, y: T) -> bool { x > y } /// /// Iterate over the range [`lo`..`hi`) /// /// # Arguments /// /// * `lo` - lower bound, inclusive /// * `hi` - higher bound, exclusive /// /// # Examples /// ~~~ /// let mut sum = 0; /// for int::range(1, 5) |i| { /// sum += i; /// } /// assert!(sum == 10); /// ~~~ /// #[inline(always)] /// Iterate over the range [`start`,`start`+`step`..`stop`) pub fn range_step(start: T, stop: T, step: T, it: &fn(T) -> bool) { let mut i = start; if step == 0 { fail!(~"range_step called with step == 0"); } else if step > 0 { // ascending while i < stop { if !it(i) { break } // avoiding overflow. break if i + step > max_value if i > max_value - step { break; } i += step; } } else { // descending while i > stop { if !it(i) { break } // avoiding underflow. break if i + step < min_value if i < min_value - step { break; } i += step; } } } #[inline(always)] /// Iterate over the range [`lo`..`hi`) pub fn range(lo: T, hi: T, it: &fn(T) -> bool) { range_step(lo, hi, 1 as T, it); } #[inline(always)] /// Iterate over the range [`hi`..`lo`) pub fn range_rev(hi: T, lo: T, it: &fn(T) -> bool) { range_step(hi, lo, -1 as T, it); } /// Computes the bitwise complement #[inline(always)] pub fn compl(i: T) -> T { -1 as T ^ i } /// Computes the absolute value #[inline(always)] pub fn abs(i: T) -> T { i.abs() } impl Num for T {} #[cfg(notest)] impl Ord for T { #[inline(always)] fn lt(&self, other: &T) -> bool { return (*self) < (*other); } #[inline(always)] fn le(&self, other: &T) -> bool { return (*self) <= (*other); } #[inline(always)] fn ge(&self, other: &T) -> bool { return (*self) >= (*other); } #[inline(always)] fn gt(&self, other: &T) -> bool { return (*self) > (*other); } } #[cfg(notest)] impl Eq for T { #[inline(always)] fn eq(&self, other: &T) -> bool { return (*self) == (*other); } #[inline(always)] fn ne(&self, other: &T) -> bool { return (*self) != (*other); } } impl Orderable for T { #[inline(always)] fn min(&self, other: &T) -> T { if *self < *other { *self } else { *other } } #[inline(always)] fn max(&self, other: &T) -> T { if *self > *other { *self } else { *other } } #[inline(always)] fn clamp(&self, mn: &T, mx: &T) -> T { if *self > *mx { *mx } else if *self < *mn { *mn } else { *self } } } impl Zero for T { #[inline(always)] fn zero() -> T { 0 } #[inline(always)] fn is_zero(&self) -> bool { *self == 0 } } impl One for T { #[inline(always)] fn one() -> T { 1 } } #[cfg(notest)] impl Add for T { #[inline(always)] fn add(&self, other: &T) -> T { *self + *other } } #[cfg(notest)] impl Sub for T { #[inline(always)] fn sub(&self, other: &T) -> T { *self - *other } } #[cfg(notest)] impl Mul for T { #[inline(always)] fn mul(&self, other: &T) -> T { *self * *other } } #[cfg(stage0,notest)] impl Div for T { #[inline(always)] fn div(&self, other: &T) -> T { *self / *other } } #[cfg(not(stage0),notest)] impl Quot for T { /// /// Returns the integer quotient, truncated towards 0. As this behaviour reflects /// the underlying machine implementation it is more efficient than `Natural::div`. /// /// # Examples /// /// ~~~ /// assert!( 8 / 3 == 2); /// assert!( 8 / -3 == -2); /// assert!(-8 / 3 == -2); /// assert!(-8 / -3 == 2); /// assert!( 1 / 2 == 0); /// assert!( 1 / -2 == 0); /// assert!(-1 / 2 == 0); /// assert!(-1 / -2 == 0); /// ~~~ /// #[inline(always)] fn quot(&self, other: &T) -> T { *self / *other } } #[cfg(stage0,notest)] impl Modulo for T { #[inline(always)] fn modulo(&self, other: &T) -> T { *self % *other } } #[cfg(not(stage0),notest)] impl Rem for T { /// /// Returns the integer remainder after division, satisfying: /// /// ~~~ /// assert!((n / d) * d + (n % d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// assert!( 8 % 3 == 2); /// assert!( 8 % -3 == 2); /// assert!(-8 % 3 == -2); /// assert!(-8 % -3 == -2); /// assert!( 1 % 2 == 1); /// assert!( 1 % -2 == 1); /// assert!(-1 % 2 == -1); /// assert!(-1 % -2 == -1); /// ~~~ /// #[inline(always)] fn rem(&self, other: &T) -> T { *self % *other } } #[cfg(notest)] impl Neg for T { #[inline(always)] fn neg(&self) -> T { -*self } } impl Signed for T { /// Computes the absolute value #[inline(always)] fn abs(&self) -> T { if self.is_negative() { -*self } else { *self } } /// /// # Returns /// /// - `0` if the number is zero /// - `1` if the number is positive /// - `-1` if the number is negative /// #[inline(always)] fn signum(&self) -> T { match *self { n if n > 0 => 1, 0 => 0, _ => -1, } } /// Returns true if the number is positive #[inline(always)] fn is_positive(&self) -> bool { *self > 0 } /// Returns true if the number is negative #[inline(always)] fn is_negative(&self) -> bool { *self < 0 } } impl Integer for T { /// /// Floored integer division /// /// # Examples /// /// ~~~ /// assert!(( 8).div( 3) == 2); /// assert!(( 8).div(-3) == -3); /// assert!((-8).div( 3) == -3); /// assert!((-8).div(-3) == 2); /// /// assert!(( 1).div( 2) == 0); /// assert!(( 1).div(-2) == -1); /// assert!((-1).div( 2) == -1); /// assert!((-1).div(-2) == 0); /// ~~~ /// #[inline(always)] fn div(&self, other: &T) -> T { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.quot_rem(other) { (q, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => q - 1, (q, _) => q, } } /// /// Integer modulo, satisfying: /// /// ~~~ /// assert!(n.div(d) * d + n.modulo(d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// assert!(( 8).modulo( 3) == 2); /// assert!(( 8).modulo(-3) == -1); /// assert!((-8).modulo( 3) == 1); /// assert!((-8).modulo(-3) == -2); /// /// assert!(( 1).modulo( 2) == 1); /// assert!(( 1).modulo(-2) == -1); /// assert!((-1).modulo( 2) == 1); /// assert!((-1).modulo(-2) == -1); /// ~~~ /// #[inline(always)] fn modulo(&self, other: &T) -> T { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match *self % *other { r if (r > 0 && *other < 0) || (r < 0 && *other > 0) => r + *other, r => r, } } /// Calculates `div` and `modulo` simultaneously #[inline(always)] fn div_mod(&self, other: &T) -> (T,T) { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.quot_rem(other) { (q, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => (q - 1, r + *other), (q, r) => (q, r), } } /// Calculates `quot` (`\`) and `rem` (`%`) simultaneously #[inline(always)] fn quot_rem(&self, other: &T) -> (T,T) { (*self / *other, *self % *other) } /// /// Calculates the Greatest Common Divisor (GCD) of the number and `other` /// /// The result is always positive /// #[inline(always)] fn gcd(&self, other: &T) -> T { // Use Euclid's algorithm let mut m = *self, n = *other; while m != 0 { let temp = m; m = n % temp; n = temp; } n.abs() } /// /// Calculates the Lowest Common Multiple (LCM) of the number and `other` /// #[inline(always)] fn lcm(&self, other: &T) -> T { ((*self * *other) / self.gcd(other)).abs() // should not have to recaluculate abs } /// Returns `true` if the number can be divided by `other` without leaving a remainder #[inline(always)] fn divisible_by(&self, other: &T) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline(always)] fn is_even(&self) -> bool { self.divisible_by(&2) } /// Returns `true` if the number is not divisible by `2` #[inline(always)] fn is_odd(&self) -> bool { !self.is_even() } } impl Bitwise for T {} #[cfg(notest)] impl BitOr for T { #[inline(always)] fn bitor(&self, other: &T) -> T { *self | *other } } #[cfg(notest)] impl BitAnd for T { #[inline(always)] fn bitand(&self, other: &T) -> T { *self & *other } } #[cfg(notest)] impl BitXor for T { #[inline(always)] fn bitxor(&self, other: &T) -> T { *self ^ *other } } #[cfg(notest)] impl Shl for T { #[inline(always)] fn shl(&self, other: &T) -> T { *self << *other } } #[cfg(notest)] impl Shr for T { #[inline(always)] fn shr(&self, other: &T) -> T { *self >> *other } } #[cfg(notest)] impl Not for T { #[inline(always)] fn not(&self) -> T { !*self } } impl Bounded for T { #[inline(always)] fn min_value() -> T { min_value } #[inline(always)] fn max_value() -> T { max_value } } impl Int for T {} // String conversion functions and impl str -> num /// Parse a string as a number in base 10. #[inline(always)] pub fn from_str(s: &str) -> Option { strconv::from_str_common(s, 10u, true, false, false, strconv::ExpNone, false, false) } /// Parse a string as a number in the given base. #[inline(always)] pub fn from_str_radix(s: &str, radix: uint) -> Option { strconv::from_str_common(s, radix, true, false, false, strconv::ExpNone, false, false) } /// Parse a byte slice as a number in the given base. #[inline(always)] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option { strconv::from_str_bytes_common(buf, radix, true, false, false, strconv::ExpNone, false, false) } impl FromStr for T { #[inline(always)] fn from_str(s: &str) -> Option { from_str(s) } } impl FromStrRadix for T { #[inline(always)] fn from_str_radix(s: &str, radix: uint) -> Option { from_str_radix(s, radix) } } // String conversion functions and impl num -> str /// Convert to a string as a byte slice in a given base. #[inline(always)] pub fn to_str_bytes(n: T, radix: uint, f: &fn(v: &[u8]) -> U) -> U { let (buf, _) = strconv::to_str_bytes_common(&n, radix, false, strconv::SignNeg, strconv::DigAll); f(buf) } /// Convert to a string in base 10. #[inline(always)] pub fn to_str(num: T) -> ~str { let (buf, _) = strconv::to_str_common(&num, 10u, false, strconv::SignNeg, strconv::DigAll); buf } /// Convert to a string in a given base. #[inline(always)] pub fn to_str_radix(num: T, radix: uint) -> ~str { let (buf, _) = strconv::to_str_common(&num, radix, false, strconv::SignNeg, strconv::DigAll); buf } impl ToStr for T { #[inline(always)] fn to_str(&self) -> ~str { to_str(*self) } } impl ToStrRadix for T { #[inline(always)] fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } #[cfg(test)] mod tests { use super::*; use super::inst::T; use prelude::*; #[test] fn test_num() { num::test_num(10 as T, 2 as T); } #[test] fn test_orderable() { assert_eq!((1 as T).min(&(2 as T)), 1 as T); assert_eq!((2 as T).min(&(1 as T)), 1 as T); assert_eq!((1 as T).max(&(2 as T)), 2 as T); assert_eq!((2 as T).max(&(1 as T)), 2 as T); assert_eq!((1 as T).clamp(&(2 as T), &(4 as T)), 2 as T); assert_eq!((8 as T).clamp(&(2 as T), &(4 as T)), 4 as T); assert_eq!((3 as T).clamp(&(2 as T), &(4 as T)), 3 as T); } #[test] pub fn test_signed() { assert_eq!((1 as T).abs(), 1 as T); assert_eq!((0 as T).abs(), 0 as T); assert_eq!((-1 as T).abs(), 1 as T); assert_eq!((1 as T).signum(), 1 as T); assert_eq!((0 as T).signum(), 0 as T); assert_eq!((-0 as T).signum(), 0 as T); assert_eq!((-1 as T).signum(), -1 as T); assert!((1 as T).is_positive()); assert!(!(0 as T).is_positive()); assert!(!(-0 as T).is_positive()); assert!(!(-1 as T).is_positive()); assert!(!(1 as T).is_negative()); assert!(!(0 as T).is_negative()); assert!(!(-0 as T).is_negative()); assert!((-1 as T).is_negative()); } /// /// Checks that the division rule holds for: /// /// - `n`: numerator (dividend) /// - `d`: denominator (divisor) /// - `qr`: quotient and remainder /// #[cfg(test)] fn test_division_rule((n,d): (T,T), (q,r): (T,T)) { assert_eq!(d * q + r, n); } #[test] fn test_quot_rem() { fn test_nd_qr(nd: (T,T), qr: (T,T)) { let (n,d) = nd; let separate_quot_rem = (n / d, n % d); let combined_quot_rem = n.quot_rem(&d); assert_eq!(separate_quot_rem, qr); assert_eq!(combined_quot_rem, qr); test_division_rule(nd, separate_quot_rem); test_division_rule(nd, combined_quot_rem); } test_nd_qr(( 8, 3), ( 2, 2)); test_nd_qr(( 8, -3), (-2, 2)); test_nd_qr((-8, 3), (-2, -2)); test_nd_qr((-8, -3), ( 2, -2)); test_nd_qr(( 1, 2), ( 0, 1)); test_nd_qr(( 1, -2), ( 0, 1)); test_nd_qr((-1, 2), ( 0, -1)); test_nd_qr((-1, -2), ( 0, -1)); } #[test] fn test_div_mod() { fn test_nd_dm(nd: (T,T), dm: (T,T)) { let (n,d) = nd; let separate_div_mod = (n.div(&d), n.modulo(&d)); let combined_div_mod = n.div_mod(&d); assert_eq!(separate_div_mod, dm); assert_eq!(combined_div_mod, dm); test_division_rule(nd, separate_div_mod); test_division_rule(nd, combined_div_mod); } test_nd_dm(( 8, 3), ( 2, 2)); test_nd_dm(( 8, -3), (-3, -1)); test_nd_dm((-8, 3), (-3, 1)); test_nd_dm((-8, -3), ( 2, -2)); test_nd_dm(( 1, 2), ( 0, 1)); test_nd_dm(( 1, -2), (-1, -1)); test_nd_dm((-1, 2), (-1, 1)); test_nd_dm((-1, -2), ( 0, -1)); } #[test] fn test_gcd() { assert_eq!((10 as T).gcd(&2), 2 as T); assert_eq!((10 as T).gcd(&3), 1 as T); assert_eq!((0 as T).gcd(&3), 3 as T); assert_eq!((3 as T).gcd(&3), 3 as T); assert_eq!((56 as T).gcd(&42), 14 as T); assert_eq!((3 as T).gcd(&-3), 3 as T); assert_eq!((-6 as T).gcd(&3), 3 as T); assert_eq!((-4 as T).gcd(&-2), 2 as T); } #[test] fn test_lcm() { assert_eq!((1 as T).lcm(&0), 0 as T); assert_eq!((0 as T).lcm(&1), 0 as T); assert_eq!((1 as T).lcm(&1), 1 as T); assert_eq!((-1 as T).lcm(&1), 1 as T); assert_eq!((1 as T).lcm(&-1), 1 as T); assert_eq!((-1 as T).lcm(&-1), 1 as T); assert_eq!((8 as T).lcm(&9), 72 as T); assert_eq!((11 as T).lcm(&5), 55 as T); } #[test] fn test_bitwise() { assert_eq!(0b1110 as T, (0b1100 as T).bitor(&(0b1010 as T))); assert_eq!(0b1000 as T, (0b1100 as T).bitand(&(0b1010 as T))); assert_eq!(0b0110 as T, (0b1100 as T).bitxor(&(0b1010 as T))); assert_eq!(0b1110 as T, (0b0111 as T).shl(&(1 as T))); assert_eq!(0b0111 as T, (0b1110 as T).shr(&(1 as T))); assert_eq!(-(0b11 as T) - (1 as T), (0b11 as T).not()); } #[test] fn test_bitcount() { assert_eq!((0b010101 as T).population_count(), 3); } #[test] fn test_primitive() { assert_eq!(Primitive::bits::(), sys::size_of::() * 8); assert_eq!(Primitive::bytes::(), sys::size_of::()); } #[test] fn test_from_str() { assert_eq!(from_str(~"0"), Some(0 as T)); assert_eq!(from_str(~"3"), Some(3 as T)); assert_eq!(from_str(~"10"), Some(10 as T)); assert_eq!(i32::from_str(~"123456789"), Some(123456789 as i32)); assert_eq!(from_str(~"00100"), Some(100 as T)); assert_eq!(from_str(~"-1"), Some(-1 as T)); assert_eq!(from_str(~"-3"), Some(-3 as T)); assert_eq!(from_str(~"-10"), Some(-10 as T)); assert_eq!(i32::from_str(~"-123456789"), Some(-123456789 as i32)); assert_eq!(from_str(~"-00100"), Some(-100 as T)); assert!(from_str(~" ").is_none()); assert!(from_str(~"x").is_none()); } #[test] fn test_parse_bytes() { use str::to_bytes; assert_eq!(parse_bytes(to_bytes(~"123"), 10u), Some(123 as T)); assert_eq!(parse_bytes(to_bytes(~"1001"), 2u), Some(9 as T)); assert_eq!(parse_bytes(to_bytes(~"123"), 8u), Some(83 as T)); assert_eq!(i32::parse_bytes(to_bytes(~"123"), 16u), Some(291 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"ffff"), 16u), Some(65535 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"FFFF"), 16u), Some(65535 as i32)); assert_eq!(parse_bytes(to_bytes(~"z"), 36u), Some(35 as T)); assert_eq!(parse_bytes(to_bytes(~"Z"), 36u), Some(35 as T)); assert_eq!(parse_bytes(to_bytes(~"-123"), 10u), Some(-123 as T)); assert_eq!(parse_bytes(to_bytes(~"-1001"), 2u), Some(-9 as T)); assert_eq!(parse_bytes(to_bytes(~"-123"), 8u), Some(-83 as T)); assert_eq!(i32::parse_bytes(to_bytes(~"-123"), 16u), Some(-291 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"-ffff"), 16u), Some(-65535 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"-FFFF"), 16u), Some(-65535 as i32)); assert_eq!(parse_bytes(to_bytes(~"-z"), 36u), Some(-35 as T)); assert_eq!(parse_bytes(to_bytes(~"-Z"), 36u), Some(-35 as T)); assert!(parse_bytes(to_bytes(~"Z"), 35u).is_none()); assert!(parse_bytes(to_bytes(~"-9"), 2u).is_none()); } #[test] fn test_to_str() { assert_eq!(to_str_radix(0 as T, 10u), ~"0"); assert_eq!(to_str_radix(1 as T, 10u), ~"1"); assert_eq!(to_str_radix(-1 as T, 10u), ~"-1"); assert_eq!(to_str_radix(127 as T, 16u), ~"7f"); assert_eq!(to_str_radix(100 as T, 10u), ~"100"); } #[test] fn test_int_to_str_overflow() { let mut i8_val: i8 = 127_i8; assert_eq!(i8::to_str(i8_val), ~"127"); i8_val += 1 as i8; assert_eq!(i8::to_str(i8_val), ~"-128"); let mut i16_val: i16 = 32_767_i16; assert_eq!(i16::to_str(i16_val), ~"32767"); i16_val += 1 as i16; assert_eq!(i16::to_str(i16_val), ~"-32768"); let mut i32_val: i32 = 2_147_483_647_i32; assert_eq!(i32::to_str(i32_val), ~"2147483647"); i32_val += 1 as i32; assert_eq!(i32::to_str(i32_val), ~"-2147483648"); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert_eq!(i64::to_str(i64_val), ~"9223372036854775807"); i64_val += 1 as i64; assert_eq!(i64::to_str(i64_val), ~"-9223372036854775808"); } #[test] fn test_int_from_str_overflow() { let mut i8_val: i8 = 127_i8; assert_eq!(i8::from_str(~"127"), Some(i8_val)); assert!(i8::from_str(~"128").is_none()); i8_val += 1 as i8; assert_eq!(i8::from_str(~"-128"), Some(i8_val)); assert!(i8::from_str(~"-129").is_none()); let mut i16_val: i16 = 32_767_i16; assert_eq!(i16::from_str(~"32767"), Some(i16_val)); assert!(i16::from_str(~"32768").is_none()); i16_val += 1 as i16; assert_eq!(i16::from_str(~"-32768"), Some(i16_val)); assert!(i16::from_str(~"-32769").is_none()); let mut i32_val: i32 = 2_147_483_647_i32; assert_eq!(i32::from_str(~"2147483647"), Some(i32_val)); assert!(i32::from_str(~"2147483648").is_none()); i32_val += 1 as i32; assert_eq!(i32::from_str(~"-2147483648"), Some(i32_val)); assert!(i32::from_str(~"-2147483649").is_none()); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert_eq!(i64::from_str(~"9223372036854775807"), Some(i64_val)); assert!(i64::from_str(~"9223372036854775808").is_none()); i64_val += 1 as i64; assert_eq!(i64::from_str(~"-9223372036854775808"), Some(i64_val)); assert!(i64::from_str(~"-9223372036854775809").is_none()); } #[test] fn test_ranges() { let mut l = ~[]; for range(0,3) |i| { l.push(i); } for range_rev(13,10) |i| { l.push(i); } for range_step(20,26,2) |i| { l.push(i); } for range_step(36,30,-2) |i| { l.push(i); } for range_step(max_value - 2, max_value, 2) |i| { l.push(i); } for range_step(max_value - 3, max_value, 2) |i| { l.push(i); } for range_step(min_value + 2, min_value, -2) |i| { l.push(i); } for range_step(min_value + 3, min_value, -2) |i| { l.push(i); } assert_eq!(l, ~[0,1,2, 13,12,11, 20,22,24, 36,34,32, max_value-2, max_value-3,max_value-1, min_value+2, min_value+3,min_value+1]); // None of the `fail`s should execute. for range(10,0) |_i| { fail!(~"unreachable"); } for range_rev(0,10) |_i| { fail!(~"unreachable"); } for range_step(10,0,1) |_i| { fail!(~"unreachable"); } for range_step(0,10,-1) |_i| { fail!(~"unreachable"); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step() { for range_step(0,10,0) |_i| {} } }