// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::{Block, Crate, expr_, expr_mac, mac_invoc_tt}; use ast::{item_mac, stmt_, stmt_mac, stmt_expr, stmt_semi}; use ast::{illegal_ctxt}; use ast; use ast_util::{new_rename, new_mark, resolve}; use attr; use attr::AttrMetaMethods; use codemap; use codemap::{span, spanned, ExpnInfo, NameAndSpan}; use ext::base::*; use fold::*; use parse; use parse::{parse_item_from_source_str}; use parse::token; use parse::token::{ident_to_str, intern}; use visit; use visit::Visitor; use std::vec; pub fn expand_expr(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, e: &expr_, s: span, fld: @ast_fold, orig: @fn(&expr_, span, @ast_fold) -> (expr_, span)) -> (expr_, span) { match *e { // expr_mac should really be expr_ext or something; it's the // entry-point for all syntax extensions. expr_mac(ref mac) => { match (*mac).node { // Token-tree macros: mac_invoc_tt(ref pth, ref tts) => { if (pth.idents.len() > 1u) { cx.span_fatal( pth.span, fmt!("expected macro name without module \ separators")); } let extname = &pth.idents[0]; let extnamestr = ident_to_str(extname); // leaving explicit deref here to highlight unbox op: match (*extsbox).find(&extname.name) { None => { cx.span_fatal( pth.span, fmt!("macro undefined: '%s'", extnamestr)) } Some(@SE(NormalTT(SyntaxExpanderTT{ expander: exp, span: exp_sp }))) => { cx.bt_push(ExpnInfo { call_site: s, callee: NameAndSpan { name: extnamestr, span: exp_sp, }, }); let expanded = match exp(cx, mac.span, *tts) { MRExpr(e) => e, MRAny(expr_maker,_,_) => expr_maker(), _ => { cx.span_fatal( pth.span, fmt!( "non-expr macro in expr pos: %s", extnamestr ) ) } }; //keep going, outside-in let fully_expanded = fld.fold_expr(expanded).node.clone(); cx.bt_pop(); (fully_expanded, s) } _ => { cx.span_fatal( pth.span, fmt!("'%s' is not a tt-style macro", extnamestr) ) } } } } } // Desugar expr_for_loop // From: `foreach in ` ast::expr_for_loop(src_pat, src_expr, ref src_loop_block) => { let src_pat = src_pat.clone(); let src_expr = src_expr.clone(); // Expand any interior macros etc. // NB: we don't fold pats yet. Curious. let src_expr = fld.fold_expr(src_expr).clone(); let src_loop_block = fld.fold_block(src_loop_block).clone(); let span = s; let lo = s.lo; let hi = s.hi; pub fn mk_expr(cx: @ExtCtxt, span: span, node: expr_) -> @ast::expr { @ast::expr { id: cx.next_id(), node: node, span: span, } } fn mk_block(cx: @ExtCtxt, stmts: &[@ast::stmt], expr: Option<@ast::expr>, span: span) -> ast::Block { ast::Block { view_items: ~[], stmts: stmts.to_owned(), expr: expr, id: cx.next_id(), rules: ast::DefaultBlock, span: span, } } fn mk_simple_path(ident: ast::ident, span: span) -> ast::Path { ast::Path { span: span, global: false, idents: ~[ident], rp: None, types: ~[] } } // to: // // { // let _i = &mut ; // loop { // match i.next() { // None => break, // Some() => // } // } // } let local_ident = token::gensym_ident("i"); let some_ident = token::str_to_ident("Some"); let none_ident = token::str_to_ident("None"); let next_ident = token::str_to_ident("next"); let local_path_1 = mk_simple_path(local_ident, span); let local_path_2 = mk_simple_path(local_ident, span); let some_path = mk_simple_path(some_ident, span); let none_path = mk_simple_path(none_ident, span); // `let i = &mut ` let iter_decl_stmt = { let ty = ast::Ty { id: cx.next_id(), node: ast::ty_infer, span: span }; let local = @ast::Local { is_mutbl: false, ty: ty, pat: @ast::pat { id: cx.next_id(), node: ast::pat_ident(ast::bind_infer, local_path_1, None), span: src_expr.span }, init: Some(mk_expr(cx, src_expr.span, ast::expr_addr_of(ast::m_mutbl, src_expr))), id: cx.next_id(), span: src_expr.span, }; let e = @spanned(src_expr.span.lo, src_expr.span.hi, ast::decl_local(local)); @spanned(lo, hi, ast::stmt_decl(e, cx.next_id())) }; // `None => break;` let none_arm = { let break_expr = mk_expr(cx, span, ast::expr_break(None)); let break_stmt = @spanned(lo, hi, ast::stmt_expr(break_expr, cx.next_id())); let none_block = mk_block(cx, [break_stmt], None, span); let none_pat = @ast::pat { id: cx.next_id(), node: ast::pat_ident(ast::bind_infer, none_path, None), span: span }; ast::arm { pats: ~[none_pat], guard: None, body: none_block } }; // `Some() => ` let some_arm = { let pat = @ast::pat { id: cx.next_id(), node: ast::pat_enum(some_path, Some(~[src_pat])), span: src_pat.span }; ast::arm { pats: ~[pat], guard: None, body: src_loop_block } }; // `match i.next() { ... }` let match_stmt = { let local_expr = mk_expr(cx, span, ast::expr_path(local_path_2)); let next_call_expr = mk_expr(cx, span, ast::expr_method_call(cx.next_id(), local_expr, next_ident, ~[], ~[], ast::NoSugar)); let match_expr = mk_expr(cx, span, ast::expr_match(next_call_expr, ~[none_arm, some_arm])); @spanned(lo, hi, ast::stmt_expr(match_expr, cx.next_id())) }; // `loop { ... }` let loop_block = { let loop_body_block = mk_block(cx, [match_stmt], None, span); let loop_body_expr = mk_expr(cx, span, ast::expr_loop(loop_body_block, None)); let loop_body_stmt = @spanned(lo, hi, ast::stmt_expr(loop_body_expr, cx.next_id())); mk_block(cx, [iter_decl_stmt, loop_body_stmt], None, span) }; (ast::expr_block(loop_block), span) } _ => orig(e, s, fld) } } // This is a secondary mechanism for invoking syntax extensions on items: // "decorator" attributes, such as #[auto_encode]. These are invoked by an // attribute prefixing an item, and are interpreted by feeding the item // through the named attribute _as a syntax extension_ and splicing in the // resulting item vec into place in favour of the decorator. Note that // these do _not_ work for macro extensions, just ItemDecorator ones. // // NB: there is some redundancy between this and expand_item, below, and // they might benefit from some amount of semantic and language-UI merger. pub fn expand_mod_items(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, module_: &ast::_mod, fld: @ast_fold, orig: @fn(&ast::_mod, @ast_fold) -> ast::_mod) -> ast::_mod { // Fold the contents first: let module_ = orig(module_, fld); // For each item, look through the attributes. If any of them are // decorated with "item decorators", then use that function to transform // the item into a new set of items. let new_items = do vec::flat_map(module_.items) |item| { do item.attrs.rev_iter().fold(~[*item]) |items, attr| { let mname = attr.name(); match (*extsbox).find(&intern(mname)) { Some(@SE(ItemDecorator(dec_fn))) => { cx.bt_push(ExpnInfo { call_site: attr.span, callee: NameAndSpan { name: mname, span: None } }); let r = dec_fn(cx, attr.span, attr.node.value, items); cx.bt_pop(); r }, _ => items, } } }; ast::_mod { items: new_items, ..module_ } } // eval $e with a new exts frame: macro_rules! with_exts_frame ( ($extsboxexpr:expr,$macros_escape:expr,$e:expr) => ({let extsbox = $extsboxexpr; let oldexts = *extsbox; *extsbox = oldexts.push_frame(); extsbox.insert(intern(special_block_name), @BlockInfo(BlockInfo{macros_escape:$macros_escape,pending_renames:@mut ~[]})); let result = $e; *extsbox = oldexts; result }) ) static special_block_name : &'static str = " block"; // When we enter a module, record it, for the sake of `module!` pub fn expand_item(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, it: @ast::item, fld: @ast_fold, orig: @fn(@ast::item, @ast_fold) -> Option<@ast::item>) -> Option<@ast::item> { // need to do expansion first... it might turn out to be a module. let maybe_it = match it.node { ast::item_mac(*) => expand_item_mac(extsbox, cx, it, fld), _ => Some(it) }; match maybe_it { Some(it) => { match it.node { ast::item_mod(_) | ast::item_foreign_mod(_) => { cx.mod_push(it.ident); let macro_escape = contains_macro_escape(it.attrs); let result = with_exts_frame!(extsbox,macro_escape,orig(it,fld)); cx.mod_pop(); result } _ => orig(it,fld) } } None => None } } // does this attribute list contain "macro_escape" ? pub fn contains_macro_escape(attrs: &[ast::Attribute]) -> bool { attr::contains_name(attrs, "macro_escape") } // Support for item-position macro invocations, exactly the same // logic as for expression-position macro invocations. pub fn expand_item_mac(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, it: @ast::item, fld: @ast_fold) -> Option<@ast::item> { let (pth, tts) = match it.node { item_mac(codemap::spanned { node: mac_invoc_tt(ref pth, ref tts), _}) => { (pth, (*tts).clone()) } _ => cx.span_bug(it.span, "invalid item macro invocation") }; let extname = &pth.idents[0]; let extnamestr = ident_to_str(extname); let expanded = match (*extsbox).find(&extname.name) { None => cx.span_fatal(pth.span, fmt!("macro undefined: '%s!'", extnamestr)), Some(@SE(NormalTT(ref expand))) => { if it.ident != parse::token::special_idents::invalid { cx.span_fatal(pth.span, fmt!("macro %s! expects no ident argument, \ given '%s'", extnamestr, ident_to_str(&it.ident))); } cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr, span: expand.span } }); ((*expand).expander)(cx, it.span, tts) } Some(@SE(IdentTT(ref expand))) => { if it.ident == parse::token::special_idents::invalid { cx.span_fatal(pth.span, fmt!("macro %s! expects an ident argument", extnamestr)); } cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr, span: expand.span } }); ((*expand).expander)(cx, it.span, it.ident, tts) } _ => cx.span_fatal( it.span, fmt!("%s! is not legal in item position", extnamestr)) }; let maybe_it = match expanded { MRItem(it) => fld.fold_item(it), MRExpr(_) => cx.span_fatal(pth.span, fmt!("expr macro in item position: %s", extnamestr)), MRAny(_, item_maker, _) => item_maker().chain(|i| {fld.fold_item(i)}), MRDef(ref mdef) => { insert_macro(*extsbox,intern(mdef.name), @SE((*mdef).ext)); None } }; cx.bt_pop(); return maybe_it; } // insert a macro into the innermost frame that doesn't have the // macro_escape tag. fn insert_macro(exts: SyntaxEnv, name: ast::Name, transformer: @Transformer) { let is_non_escaping_block = |t : &@Transformer| -> bool{ match t { &@BlockInfo(BlockInfo {macros_escape:false,_}) => true, &@BlockInfo(BlockInfo {_}) => false, _ => fail!(fmt!("special identifier %? was bound to a non-BlockInfo", special_block_name)) } }; exts.insert_into_frame(name,transformer,intern(special_block_name), is_non_escaping_block) } // expand a stmt pub fn expand_stmt(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, s: &stmt_, sp: span, fld: @ast_fold, orig: @fn(&stmt_, span, @ast_fold) -> (Option, span)) -> (Option, span) { let (mac, pth, tts, semi) = match *s { stmt_mac(ref mac, semi) => { match mac.node { mac_invoc_tt(ref pth, ref tts) => { ((*mac).clone(), pth, (*tts).clone(), semi) } } } _ => return orig(s, sp, fld) }; if (pth.idents.len() > 1u) { cx.span_fatal( pth.span, fmt!("expected macro name without module \ separators")); } let extname = &pth.idents[0]; let extnamestr = ident_to_str(extname); let (fully_expanded, sp) = match (*extsbox).find(&extname.name) { None => cx.span_fatal(pth.span, fmt!("macro undefined: '%s'", extnamestr)), Some(@SE(NormalTT( SyntaxExpanderTT{expander: exp, span: exp_sp}))) => { cx.bt_push(ExpnInfo { call_site: sp, callee: NameAndSpan { name: extnamestr, span: exp_sp } }); let expanded = match exp(cx, mac.span, tts) { MRExpr(e) => @codemap::spanned { node: stmt_expr(e, cx.next_id()), span: e.span}, MRAny(_,_,stmt_mkr) => stmt_mkr(), _ => cx.span_fatal( pth.span, fmt!("non-stmt macro in stmt pos: %s", extnamestr)) }; //keep going, outside-in let fully_expanded = match fld.fold_stmt(expanded) { Some(stmt) => { let fully_expanded = &stmt.node; cx.bt_pop(); (*fully_expanded).clone() } None => { cx.span_fatal(pth.span, "macro didn't expand to a statement") } }; (fully_expanded, sp) } _ => { cx.span_fatal(pth.span, fmt!("'%s' is not a tt-style macro", extnamestr)) } }; (match fully_expanded { stmt_expr(e, stmt_id) if semi => Some(stmt_semi(e, stmt_id)), _ => { Some(fully_expanded) } /* might already have a semi */ }, sp) } // return a visitor that extracts the pat_ident paths // from a given pattern and puts them in a mutable // array (passed in to the traversal) pub fn new_name_finder() -> @Visitor<@mut ~[ast::ident]> { let default_visitor = visit::default_visitor(); @Visitor{ visit_pat : |p:@ast::pat, (ident_accum, v): (@mut ~[ast::ident], visit::vt<@mut ~[ast::ident]>)| { match *p { // we found a pat_ident! ast::pat{id:_, node: ast::pat_ident(_,ref path,ref inner), span:_} => { match path { // a path of length one: &ast::Path{global: false,idents: [id], span:_,rp:_,types:_} => ident_accum.push(id), // I believe these must be enums... _ => () } // visit optional subpattern of pat_ident: for inner.iter().advance |subpat: &@ast::pat| { (v.visit_pat)(*subpat, (ident_accum, v)) } } // use the default traversal for non-pat_idents _ => visit::visit_pat(p,(ident_accum,v)) } }, .. *default_visitor } } pub fn expand_block(extsbox: @mut SyntaxEnv, _cx: @ExtCtxt, blk: &Block, fld: @ast_fold, orig: @fn(&Block, @ast_fold) -> Block) -> Block { // see note below about treatment of exts table with_exts_frame!(extsbox,false,orig(blk,fld)) } // get the (innermost) BlockInfo from an exts stack fn get_block_info(exts : SyntaxEnv) -> BlockInfo { match exts.find_in_topmost_frame(&intern(special_block_name)) { Some(@BlockInfo(bi)) => bi, _ => fail!(fmt!("special identifier %? was bound to a non-BlockInfo", @" block")) } } // given a mutable list of renames, return a tree-folder that applies those // renames. fn renames_to_fold(renames : @mut ~[(ast::ident,ast::Name)]) -> @ast_fold { let afp = default_ast_fold(); let f_pre = @AstFoldFns { fold_ident: |id,_| { // the individual elements are memoized... it would // also be possible to memoize on the whole list at once. let new_ctxt = renames.iter().fold(id.ctxt,|ctxt,&(from,to)| { new_rename(from,to,ctxt) }); ast::ident{name:id.name,ctxt:new_ctxt} }, .. *afp }; make_fold(f_pre) } // perform a bunch of renames fn apply_pending_renames(folder : @ast_fold, stmt : ast::stmt) -> @ast::stmt { match folder.fold_stmt(&stmt) { Some(s) => s, None => fail!(fmt!("renaming of stmt produced None")) } } pub fn new_span(cx: @ExtCtxt, sp: span) -> span { /* this discards information in the case of macro-defining macros */ return span {lo: sp.lo, hi: sp.hi, expn_info: cx.backtrace()}; } // FIXME (#2247): this is a moderately bad kludge to inject some macros into // the default compilation environment. It would be much nicer to use // a mechanism like syntax_quote to ensure hygiene. pub fn std_macros() -> @str { return @"mod __std_macros { #[macro_escape]; #[doc(hidden)]; macro_rules! ignore (($($x:tt)*) => (())) macro_rules! error ( ($arg:expr) => ( __log(1u32, fmt!( \"%?\", $arg )) ); ($( $arg:expr ),+) => ( __log(1u32, fmt!( $($arg),+ )) ) ) macro_rules! warn ( ($arg:expr) => ( __log(2u32, fmt!( \"%?\", $arg )) ); ($( $arg:expr ),+) => ( __log(2u32, fmt!( $($arg),+ )) ) ) macro_rules! info ( ($arg:expr) => ( __log(3u32, fmt!( \"%?\", $arg )) ); ($( $arg:expr ),+) => ( __log(3u32, fmt!( $($arg),+ )) ) ) // conditionally define debug!, but keep it type checking even // in non-debug builds. macro_rules! __debug ( ($arg:expr) => ( __log(4u32, fmt!( \"%?\", $arg )) ); ($( $arg:expr ),+) => ( __log(4u32, fmt!( $($arg),+ )) ) ) #[cfg(debug)] #[macro_escape] mod debug_macro { macro_rules! debug (($($arg:expr),*) => { __debug!($($arg),*) }) } #[cfg(not(debug))] #[macro_escape] mod debug_macro { macro_rules! debug (($($arg:expr),*) => { if false { __debug!($($arg),*) } }) } macro_rules! fail( () => ( fail!(\"explicit failure\") ); ($msg:expr) => ( ::std::sys::FailWithCause::fail_with($msg, file!(), line!()) ); ($( $arg:expr ),+) => ( ::std::sys::FailWithCause::fail_with(fmt!( $($arg),+ ), file!(), line!()) ) ) macro_rules! assert( ($cond:expr) => { if !$cond { ::std::sys::FailWithCause::fail_with( \"assertion failed: \" + stringify!($cond), file!(), line!()) } }; ($cond:expr, $msg:expr) => { if !$cond { ::std::sys::FailWithCause::fail_with($msg, file!(), line!()) } }; ($cond:expr, $( $arg:expr ),+) => { if !$cond { ::std::sys::FailWithCause::fail_with(fmt!( $($arg),+ ), file!(), line!()) } } ) macro_rules! assert_eq ( ($given:expr , $expected:expr) => ( { let given_val = $given; let expected_val = $expected; // check both directions of equality.... if !((given_val == expected_val) && (expected_val == given_val)) { fail!(\"assertion failed: `(left == right) && (right == \ left)` (left: `%?`, right: `%?`)\", given_val, expected_val); } } ) ) macro_rules! assert_approx_eq ( ($given:expr , $expected:expr) => ( { use std::cmp::ApproxEq; let given_val = $given; let expected_val = $expected; // check both directions of equality.... if !( given_val.approx_eq(&expected_val) && expected_val.approx_eq(&given_val) ) { fail!(\"left: %? does not approximately equal right: %?\", given_val, expected_val); } } ); ($given:expr , $expected:expr , $epsilon:expr) => ( { use std::cmp::ApproxEq; let given_val = $given; let expected_val = $expected; let epsilon_val = $epsilon; // check both directions of equality.... if !( given_val.approx_eq_eps(&expected_val, &epsilon_val) && expected_val.approx_eq_eps(&given_val, &epsilon_val) ) { fail!(\"left: %? does not approximately equal right: %? with epsilon: %?\", given_val, expected_val, epsilon_val); } } ) ) macro_rules! condition ( { pub $c:ident: $input:ty -> $out:ty; } => { pub mod $c { #[allow(non_uppercase_statics)]; static key: ::std::local_data::Key< @::std::condition::Handler<$input, $out>> = &::std::local_data::Key; pub static cond : ::std::condition::Condition<$input,$out> = ::std::condition::Condition { name: stringify!($c), key: key }; } }; { $c:ident: $input:ty -> $out:ty; } => { // FIXME (#6009): remove mod's `pub` below once variant above lands. pub mod $c { #[allow(non_uppercase_statics)]; static key: ::std::local_data::Key< @::std::condition::Handler<$input, $out>> = &::std::local_data::Key; pub static cond : ::std::condition::Condition<$input,$out> = ::std::condition::Condition { name: stringify!($c), key: key }; } } ) // // A scheme-style conditional that helps to improve code clarity in some instances when // the `if`, `else if`, and `else` keywords obscure predicates undesirably. // // # Example // // ~~~ // let clamped = // if x > mx { mx } // else if x < mn { mn } // else { x }; // ~~~ // // Using `cond!`, the above could be written as: // // ~~~ // let clamped = cond!( // (x > mx) { mx } // (x < mn) { mn } // _ { x } // ); // ~~~ // // The optional default case is denoted by `_`. // macro_rules! cond ( ( $(($pred:expr) $body:block)+ _ $default:block ) => ( $(if $pred $body else)+ $default ); // for if the default case was ommitted ( $(($pred:expr) $body:block)+ ) => ( $(if $pred $body)else+ ); ) macro_rules! printf ( ($arg:expr) => ( print(fmt!(\"%?\", $arg)) ); ($( $arg:expr ),+) => ( print(fmt!($($arg),+)) ) ) macro_rules! printfln ( ($arg:expr) => ( println(fmt!(\"%?\", $arg)) ); ($( $arg:expr ),+) => ( println(fmt!($($arg),+)) ) ) }"; } // add a bunch of macros as though they were placed at the head of the // program (ick). This should run before cfg stripping. pub fn inject_std_macros(parse_sess: @mut parse::ParseSess, cfg: ast::CrateConfig, c: &Crate) -> @Crate { let sm = match parse_item_from_source_str(@"", std_macros(), cfg.clone(), ~[], parse_sess) { Some(item) => item, None => fail!("expected core macros to parse correctly") }; let injecter = @AstFoldFns { fold_mod: |modd, _| { // just inject the std macros at the start of the first // module in the crate (i.e the crate file itself.) let items = vec::append(~[sm], modd.items); ast::_mod { items: items, // FIXME #2543: Bad copy. .. (*modd).clone() } }, .. *default_ast_fold() }; @make_fold(injecter).fold_crate(c) } pub fn expand_crate(parse_sess: @mut parse::ParseSess, cfg: ast::CrateConfig, c: &Crate) -> @Crate { // adding *another* layer of indirection here so that the block // visitor can swap out one exts table for another for the duration // of the block. The cleaner alternative would be to thread the // exts table through the fold, but that would require updating // every method/element of AstFoldFns in fold.rs. let extsbox = @mut syntax_expander_table(); let afp = default_ast_fold(); let cx = ExtCtxt::new(parse_sess, cfg.clone()); let f_pre = @AstFoldFns { fold_expr: |expr,span,recur| expand_expr(extsbox, cx, expr, span, recur, afp.fold_expr), fold_mod: |modd,recur| expand_mod_items(extsbox, cx, modd, recur, afp.fold_mod), fold_item: |item,recur| expand_item(extsbox, cx, item, recur, afp.fold_item), fold_stmt: |stmt,span,recur| expand_stmt(extsbox, cx, stmt, span, recur, afp.fold_stmt), fold_block: |blk,recur| expand_block(extsbox, cx, blk, recur, afp.fold_block), new_span: |a| new_span(cx, a), .. *afp}; let f = make_fold(f_pre); @f.fold_crate(c) } // given a function from idents to idents, produce // an ast_fold that applies that function: pub fn fun_to_ident_folder(f: @fn(ast::ident)->ast::ident) -> @ast_fold{ let afp = default_ast_fold(); let f_pre = @AstFoldFns{ fold_ident : |id, _| f(id), .. *afp }; make_fold(f_pre) } // update the ctxts in a path to get a rename node pub fn new_ident_renamer(from: ast::ident, to: ast::Name) -> @fn(ast::ident)->ast::ident { |id : ast::ident| ast::ident{ name: id.name, ctxt: new_rename(from,to,id.ctxt) } } // update the ctxts in a path to get a mark node pub fn new_ident_marker(mark: uint) -> @fn(ast::ident)->ast::ident { |id : ast::ident| ast::ident{ name: id.name, ctxt: new_mark(mark,id.ctxt) } } // perform resolution (in the MTWT sense) on all of the // idents in the tree. This is the final step in expansion. pub fn new_ident_resolver() -> @fn(ast::ident)->ast::ident { |id : ast::ident| ast::ident { name : resolve(id), ctxt : illegal_ctxt } } #[cfg(test)] mod test { use super::*; use ast; use ast::{Attribute_, AttrOuter, MetaWord, empty_ctxt}; use codemap; use codemap::spanned; use parse; use parse::token::{intern, get_ident_interner}; use print::pprust; use util::parser_testing::{string_to_item, string_to_pat, strs_to_idents}; use visit::{mk_vt}; // make sure that fail! is present #[test] fn fail_exists_test () { let src = @"fn main() { fail!(\"something appropriately gloomy\");}"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[],sess); let crate_ast = inject_std_macros(sess, ~[], crate_ast); // don't bother with striping, doesn't affect fail!. expand_crate(sess,~[],crate_ast); } // these following tests are quite fragile, in that they don't test what // *kind* of failure occurs. // make sure that macros can leave scope #[should_fail] #[test] fn macros_cant_escape_fns_test () { let src = @"fn bogus() {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[],sess); // should fail: expand_crate(sess,~[],crate_ast); } // make sure that macros can leave scope for modules #[should_fail] #[test] fn macros_cant_escape_mods_test () { let src = @"mod foo {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[],sess); // should fail: expand_crate(sess,~[],crate_ast); } // macro_escape modules shouldn't cause macros to leave scope #[test] fn macros_can_escape_flattened_mods_test () { let src = @"#[macro_escape] mod foo {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[], sess); // should fail: expand_crate(sess,~[],crate_ast); } #[test] fn std_macros_must_parse () { let src = super::std_macros(); let sess = parse::new_parse_sess(None); let cfg = ~[]; let item_ast = parse::parse_item_from_source_str( @"", src, cfg,~[],sess); match item_ast { Some(_) => (), // success None => fail!("expected this to parse") } } #[test] fn test_contains_flatten (){ let attr1 = make_dummy_attr (@"foo"); let attr2 = make_dummy_attr (@"bar"); let escape_attr = make_dummy_attr (@"macro_escape"); let attrs1 = ~[attr1, escape_attr, attr2]; assert_eq!(contains_macro_escape (attrs1),true); let attrs2 = ~[attr1,attr2]; assert_eq!(contains_macro_escape (attrs2),false); } // make a MetaWord outer attribute with the given name fn make_dummy_attr(s: @str) -> ast::Attribute { spanned { span:codemap::dummy_sp(), node: Attribute_ { style: AttrOuter, value: @spanned { node: MetaWord(s), span: codemap::dummy_sp(), }, is_sugared_doc: false, } } } #[test] fn renaming () { let maybe_item_ast = string_to_item(@"fn a() -> int { let b = 13; b }"); let item_ast = match maybe_item_ast { Some(x) => x, None => fail!("test case fail") }; let a_name = intern("a"); let a2_name = intern("a2"); let renamer = new_ident_renamer(ast::ident{name:a_name,ctxt:empty_ctxt}, a2_name); let renamed_ast = fun_to_ident_folder(renamer).fold_item(item_ast).get(); let resolver = new_ident_resolver(); let resolved_ast = fun_to_ident_folder(resolver).fold_item(renamed_ast).get(); let resolved_as_str = pprust::item_to_str(resolved_ast, get_ident_interner()); assert_eq!(resolved_as_str,~"fn a2() -> int { let b = 13; b }"); } // sigh... it looks like I have two different renaming mechanisms, now... #[test] fn pat_idents(){ let pat = string_to_pat(@"(a,Foo{x:c @ (b,9),y:Bar(4,d)})"); let pat_idents = new_name_finder(); let idents = @mut ~[]; ((*pat_idents).visit_pat)(pat, (idents, mk_vt(pat_idents))); assert_eq!(idents,@mut strs_to_idents(~["a","c","b","d"])); } }