use rustc::lint::*; use rustc::ty::{self, Ty}; use rustc::hir::*; use syntax::codemap::Span; use crate::utils::paths; use crate::utils::{is_automatically_derived, is_copy, match_path, span_lint_and_then}; /// **What it does:** Checks for deriving `Hash` but implementing `PartialEq` /// explicitly or vice versa. /// /// **Why is this bad?** The implementation of these traits must agree (for /// example for use with `HashMap`) so it’s probably a bad idea to use a /// default-generated `Hash` implementation with an explicitly defined /// `PartialEq`. In particular, the following must hold for any type: /// /// ```rust /// k1 == k2 ⇒ hash(k1) == hash(k2) /// ``` /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// #[derive(Hash)] /// struct Foo; /// /// impl PartialEq for Foo { /// ... /// } /// ``` declare_clippy_lint! { pub DERIVE_HASH_XOR_EQ, correctness, "deriving `Hash` but implementing `PartialEq` explicitly" } /// **What it does:** Checks for explicit `Clone` implementations for `Copy` /// types. /// /// **Why is this bad?** To avoid surprising behaviour, these traits should /// agree and the behaviour of `Copy` cannot be overridden. In almost all /// situations a `Copy` type should have a `Clone` implementation that does /// nothing more than copy the object, which is what `#[derive(Copy, Clone)]` /// gets you. /// /// **Known problems:** Bounds of generic types are sometimes wrong: https://github.com/rust-lang/rust/issues/26925 /// /// **Example:** /// ```rust /// #[derive(Copy)] /// struct Foo; /// /// impl Clone for Foo { /// .. /// } /// ``` declare_clippy_lint! { pub EXPL_IMPL_CLONE_ON_COPY, pedantic, "implementing `Clone` explicitly on `Copy` types" } pub struct Derive; impl LintPass for Derive { fn get_lints(&self) -> LintArray { lint_array!(EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Derive { fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) { if let ItemImpl(_, _, _, _, Some(ref trait_ref), _, _) = item.node { let ty = cx.tcx.type_of(cx.tcx.hir.local_def_id(item.id)); let is_automatically_derived = is_automatically_derived(&*item.attrs); check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived); if !is_automatically_derived { check_copy_clone(cx, item, trait_ref, ty); } } } } /// Implementation of the `DERIVE_HASH_XOR_EQ` lint. fn check_hash_peq<'a, 'tcx>( cx: &LateContext<'a, 'tcx>, span: Span, trait_ref: &TraitRef, ty: Ty<'tcx>, hash_is_automatically_derived: bool, ) { if_chain! { if match_path(&trait_ref.path, &paths::HASH); if let Some(peq_trait_def_id) = cx.tcx.lang_items().eq_trait(); then { // Look for the PartialEq implementations for `ty` cx.tcx.for_each_relevant_impl(peq_trait_def_id, ty, |impl_id| { let peq_is_automatically_derived = is_automatically_derived(&cx.tcx.get_attrs(impl_id)); if peq_is_automatically_derived == hash_is_automatically_derived { return; } let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); // Only care about `impl PartialEq for Foo` // For `impl PartialEq for A, input_types is [A, B] if trait_ref.substs.type_at(1) == ty { let mess = if peq_is_automatically_derived { "you are implementing `Hash` explicitly but have derived `PartialEq`" } else { "you are deriving `Hash` but have implemented `PartialEq` explicitly" }; span_lint_and_then( cx, DERIVE_HASH_XOR_EQ, span, mess, |db| { if let Some(node_id) = cx.tcx.hir.as_local_node_id(impl_id) { db.span_note( cx.tcx.hir.span(node_id), "`PartialEq` implemented here" ); } }); } }); } } } /// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint. fn check_copy_clone<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, item: &Item, trait_ref: &TraitRef, ty: Ty<'tcx>) { if match_path(&trait_ref.path, &paths::CLONE_TRAIT) { if !is_copy(cx, ty) { return; } match ty.sty { ty::TyAdt(def, _) if def.is_union() => return, // Some types are not Clone by default but could be cloned “by hand” if necessary ty::TyAdt(def, substs) => for variant in &def.variants { for field in &variant.fields { if let ty::TyFnDef(..) = field.ty(cx.tcx, substs).sty { return; } } for subst in substs { if let ty::subst::UnpackedKind::Type(subst) = subst.unpack() { if let ty::TyParam(_) = subst.sty { return; } } } }, _ => (), } span_lint_and_then( cx, EXPL_IMPL_CLONE_ON_COPY, item.span, "you are implementing `Clone` explicitly on a `Copy` type", |db| { db.span_note(item.span, "consider deriving `Clone` or removing `Copy`"); }, ); } }