// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Code that is useful in various trans modules. use driver::session; use driver::session::Session; use lib::llvm::{ValueRef, BasicBlockRef, BuilderRef}; use lib::llvm::{True, False, Bool}; use lib::llvm::llvm; use lib; use middle::lang_items::LangItem; use middle::trans::base; use middle::trans::build; use middle::trans::datum; use middle::trans::glue; use middle::trans::write_guard; use middle::trans::debuginfo; use middle::ty::substs; use middle::ty; use middle::typeck; use middle::borrowck::root_map_key; use util::ppaux::Repr; use middle::trans::type_::Type; use std::c_str::ToCStr; use std::cast::transmute; use std::cast; use std::hashmap::HashMap; use std::libc::{c_uint, c_longlong, c_ulonglong, c_char}; use std::vec; use syntax::ast::{Name, Ident}; use syntax::ast_map::{path, path_elt, path_pretty_name}; use syntax::codemap::Span; use syntax::parse::token; use syntax::{ast, ast_map}; pub use middle::trans::context::CrateContext; fn type_is_newtype_immediate(ccx: &mut CrateContext, ty: ty::t) -> bool { match ty::get(ty).sty { ty::ty_struct(def_id, ref substs) => { let fields = ty::struct_fields(ccx.tcx, def_id, substs); fields.len() == 1 && fields[0].ident.name == token::special_idents::unnamed_field.name && type_is_immediate(ccx, fields[0].mt.ty) } _ => false } } pub fn type_is_immediate(ccx: &mut CrateContext, ty: ty::t) -> bool { use middle::trans::machine::llsize_of_alloc; use middle::trans::type_of::sizing_type_of; let tcx = ccx.tcx; let simple = ty::type_is_scalar(ty) || ty::type_is_boxed(ty) || ty::type_is_unique(ty) || ty::type_is_region_ptr(ty) || type_is_newtype_immediate(ccx, ty) || ty::type_is_simd(tcx, ty); if simple { return true; } match ty::get(ty).sty { ty::ty_bot => true, ty::ty_struct(*) | ty::ty_enum(*) | ty::ty_tup(*) => { let llty = sizing_type_of(ccx, ty); llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type) } _ => false } } pub fn gensym_name(name: &str) -> (Ident, path_elt) { let name = token::gensym(name); let ident = Ident::new(name); (ident, path_pretty_name(ident, name as u64)) } pub struct tydesc_info { ty: ty::t, tydesc: ValueRef, size: ValueRef, align: ValueRef, borrow_offset: ValueRef, name: ValueRef, take_glue: Option, drop_glue: Option, free_glue: Option, visit_glue: Option } /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ pub struct Stats { n_static_tydescs: uint, n_glues_created: uint, n_null_glues: uint, n_real_glues: uint, n_fns: uint, n_monos: uint, n_inlines: uint, n_closures: uint, n_llvm_insns: uint, llvm_insn_ctxt: ~[~str], llvm_insns: HashMap<~str, uint>, fn_stats: ~[(~str, uint, uint)] // (ident, time-in-ms, llvm-instructions) } pub struct BuilderRef_res { B: BuilderRef, } impl Drop for BuilderRef_res { fn drop(&mut self) { unsafe { llvm::LLVMDisposeBuilder(self.B); } } } pub fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res { BuilderRef_res { B: B } } pub type ExternMap = HashMap<~str, ValueRef>; // Types used for llself. pub struct ValSelfData { v: ValueRef, t: ty::t, is_copy: bool, } // Here `self_ty` is the real type of the self parameter to this method. It // will only be set in the case of default methods. pub struct param_substs { tys: ~[ty::t], self_ty: Option, vtables: Option, self_vtables: Option } impl param_substs { pub fn validate(&self) { for t in self.tys.iter() { assert!(!ty::type_needs_infer(*t)); } for t in self.self_ty.iter() { assert!(!ty::type_needs_infer(*t)); } } } fn param_substs_to_str(this: ¶m_substs, tcx: ty::ctxt) -> ~str { format!("param_substs \\{tys:{}, vtables:{}\\}", this.tys.repr(tcx), this.vtables.repr(tcx)) } impl Repr for param_substs { fn repr(&self, tcx: ty::ctxt) -> ~str { param_substs_to_str(self, tcx) } } // Function context. Every LLVM function we create will have one of // these. pub struct FunctionContext { // The ValueRef returned from a call to llvm::LLVMAddFunction; the // address of the first instruction in the sequence of // instructions for this function that will go in the .text // section of the executable we're generating. llfn: ValueRef, // The implicit environment argument that arrives in the function we're // creating. llenv: ValueRef, // The place to store the return value. If the return type is immediate, // this is an alloca in the function. Otherwise, it's the hidden first // parameter to the function. After function construction, this should // always be Some. llretptr: Option, entry_bcx: Option<@mut Block>, // These elements: "hoisted basic blocks" containing // administrative activities that have to happen in only one place in // the function, due to LLVM's quirks. // A marker for the place where we want to insert the function's static // allocas, so that LLVM will coalesce them into a single alloca call. alloca_insert_pt: Option, llreturn: Option, // The 'self' value currently in use in this function, if there // is one. // // NB: This is the type of the self *variable*, not the self *type*. The // self type is set only for default methods, while the self variable is // set for all methods. llself: Option, // The a value alloca'd for calls to upcalls.rust_personality. Used when // outputting the resume instruction. personality: Option, // True if the caller expects this fn to use the out pointer to // return. Either way, your code should write into llretptr, but if // this value is false, llretptr will be a local alloca. caller_expects_out_pointer: bool, // Maps arguments to allocas created for them in llallocas. llargs: @mut HashMap, // Maps the def_ids for local variables to the allocas created for // them in llallocas. lllocals: @mut HashMap, // Same as above, but for closure upvars llupvars: @mut HashMap, // The NodeId of the function, or -1 if it doesn't correspond to // a user-defined function. id: ast::NodeId, // If this function is being monomorphized, this contains the type // substitutions used. param_substs: Option<@param_substs>, // The source span and nesting context where this function comes from, for // error reporting and symbol generation. span: Option, path: path, // This function's enclosing crate context. ccx: @mut CrateContext, // Used and maintained by the debuginfo module. debug_context: debuginfo::FunctionDebugContext, } impl FunctionContext { pub fn arg_pos(&self, arg: uint) -> uint { if self.caller_expects_out_pointer { arg + 2u } else { arg + 1u } } pub fn out_arg_pos(&self) -> uint { assert!(self.caller_expects_out_pointer); 0u } pub fn env_arg_pos(&self) -> uint { if self.caller_expects_out_pointer { 1u } else { 0u } } pub fn cleanup(&mut self) { unsafe { llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt.unwrap()); } // Remove the cycle between fcx and bcx, so memory can be freed self.entry_bcx = None; } pub fn get_llreturn(&mut self) -> BasicBlockRef { if self.llreturn.is_none() { self.llreturn = Some(base::mk_return_basic_block(self.llfn)); } self.llreturn.unwrap() } } pub fn warn_not_to_commit(ccx: &mut CrateContext, msg: &str) { if !ccx.do_not_commit_warning_issued { ccx.do_not_commit_warning_issued = true; ccx.sess.warn(msg.to_str() + " -- do not commit like this!"); } } // Heap selectors. Indicate which heap something should go on. #[deriving(Eq)] pub enum heap { heap_managed, heap_managed_unique, heap_exchange, heap_exchange_closure } #[deriving(Clone, Eq)] pub enum cleantype { normal_exit_only, normal_exit_and_unwind } // Cleanup functions /// A cleanup function: a built-in destructor. pub trait CleanupFunction { fn clean(&self, block: @mut Block) -> @mut Block; } /// A cleanup function that calls the "drop glue" (destructor function) on /// a typed value. pub struct TypeDroppingCleanupFunction { val: ValueRef, t: ty::t, } impl CleanupFunction for TypeDroppingCleanupFunction { fn clean(&self, block: @mut Block) -> @mut Block { glue::drop_ty(block, self.val, self.t) } } /// A cleanup function that calls the "drop glue" (destructor function) on /// an immediate typed value. pub struct ImmediateTypeDroppingCleanupFunction { val: ValueRef, t: ty::t, } impl CleanupFunction for ImmediateTypeDroppingCleanupFunction { fn clean(&self, block: @mut Block) -> @mut Block { glue::drop_ty_immediate(block, self.val, self.t) } } /// A cleanup function that releases a write guard, returning a value to /// mutable status. pub struct WriteGuardReleasingCleanupFunction { root_key: root_map_key, frozen_val_ref: ValueRef, bits_val_ref: ValueRef, filename_val: ValueRef, line_val: ValueRef, } impl CleanupFunction for WriteGuardReleasingCleanupFunction { fn clean(&self, bcx: @mut Block) -> @mut Block { write_guard::return_to_mut(bcx, self.root_key, self.frozen_val_ref, self.bits_val_ref, self.filename_val, self.line_val) } } /// A cleanup function that frees some memory in the garbage-collected heap. pub struct GCHeapFreeingCleanupFunction { ptr: ValueRef, } impl CleanupFunction for GCHeapFreeingCleanupFunction { fn clean(&self, bcx: @mut Block) -> @mut Block { glue::trans_free(bcx, self.ptr) } } /// A cleanup function that frees some memory in the exchange heap. pub struct ExchangeHeapFreeingCleanupFunction { ptr: ValueRef, } impl CleanupFunction for ExchangeHeapFreeingCleanupFunction { fn clean(&self, bcx: @mut Block) -> @mut Block { glue::trans_exchange_free(bcx, self.ptr) } } pub enum cleanup { clean(@CleanupFunction, cleantype), clean_temp(ValueRef, @CleanupFunction, cleantype), } // Can't use deriving(Clone) because of the managed closure. impl Clone for cleanup { fn clone(&self) -> cleanup { match *self { clean(f, ct) => clean(f, ct), clean_temp(v, f, ct) => clean_temp(v, f, ct), } } } // Used to remember and reuse existing cleanup paths // target: none means the path ends in an resume instruction #[deriving(Clone)] pub struct cleanup_path { target: Option, size: uint, dest: BasicBlockRef } pub fn shrink_scope_clean(scope_info: &mut ScopeInfo, size: uint) { scope_info.landing_pad = None; scope_info.cleanup_paths = scope_info.cleanup_paths.iter() .take_while(|&cu| cu.size <= size).map(|&x|x).collect(); } pub fn grow_scope_clean(scope_info: &mut ScopeInfo) { scope_info.landing_pad = None; } pub fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype { if ty::type_needs_unwind_cleanup(cx, ty) { normal_exit_and_unwind } else { normal_exit_only } } pub fn add_clean(bcx: @mut Block, val: ValueRef, t: ty::t) { if !ty::type_needs_drop(bcx.tcx(), t) { return } debug!("add_clean({}, {}, {})", bcx.to_str(), bcx.val_to_str(val), t.repr(bcx.tcx())); let cleanup_type = cleanup_type(bcx.tcx(), t); in_scope_cx(bcx, None, |scope_info| { scope_info.cleanups.push(clean(@TypeDroppingCleanupFunction { val: val, t: t, } as @CleanupFunction, cleanup_type)); grow_scope_clean(scope_info); }) } pub fn add_clean_temp_immediate(cx: @mut Block, val: ValueRef, ty: ty::t) { if !ty::type_needs_drop(cx.tcx(), ty) { return; } debug!("add_clean_temp_immediate({}, {}, {})", cx.to_str(), cx.val_to_str(val), ty.repr(cx.tcx())); let cleanup_type = cleanup_type(cx.tcx(), ty); in_scope_cx(cx, None, |scope_info| { scope_info.cleanups.push(clean_temp(val, @ImmediateTypeDroppingCleanupFunction { val: val, t: ty, } as @CleanupFunction, cleanup_type)); grow_scope_clean(scope_info); }) } pub fn add_clean_temp_mem(bcx: @mut Block, val: ValueRef, t: ty::t) { add_clean_temp_mem_in_scope_(bcx, None, val, t); } pub fn add_clean_temp_mem_in_scope(bcx: @mut Block, scope_id: ast::NodeId, val: ValueRef, t: ty::t) { add_clean_temp_mem_in_scope_(bcx, Some(scope_id), val, t); } pub fn add_clean_temp_mem_in_scope_(bcx: @mut Block, scope_id: Option, val: ValueRef, t: ty::t) { if !ty::type_needs_drop(bcx.tcx(), t) { return; } debug!("add_clean_temp_mem({}, {}, {})", bcx.to_str(), bcx.val_to_str(val), t.repr(bcx.tcx())); let cleanup_type = cleanup_type(bcx.tcx(), t); in_scope_cx(bcx, scope_id, |scope_info| { scope_info.cleanups.push(clean_temp(val, @TypeDroppingCleanupFunction { val: val, t: t, } as @CleanupFunction, cleanup_type)); grow_scope_clean(scope_info); }) } pub fn add_clean_return_to_mut(bcx: @mut Block, scope_id: ast::NodeId, root_key: root_map_key, frozen_val_ref: ValueRef, bits_val_ref: ValueRef, filename_val: ValueRef, line_val: ValueRef) { //! When an `@mut` has been frozen, we have to //! call the lang-item `return_to_mut` when the //! freeze goes out of scope. We need to pass //! in both the value which was frozen (`frozen_val`) and //! the value (`bits_val_ref`) which was returned when the //! box was frozen initially. Here, both `frozen_val_ref` and //! `bits_val_ref` are in fact pointers to stack slots. debug!("add_clean_return_to_mut({}, {}, {})", bcx.to_str(), bcx.val_to_str(frozen_val_ref), bcx.val_to_str(bits_val_ref)); in_scope_cx(bcx, Some(scope_id), |scope_info| { scope_info.cleanups.push(clean_temp( frozen_val_ref, @WriteGuardReleasingCleanupFunction { root_key: root_key, frozen_val_ref: frozen_val_ref, bits_val_ref: bits_val_ref, filename_val: filename_val, line_val: line_val, } as @CleanupFunction, normal_exit_only)); grow_scope_clean(scope_info); }) } pub fn add_clean_free(cx: @mut Block, ptr: ValueRef, heap: heap) { let free_fn = match heap { heap_managed | heap_managed_unique => { @GCHeapFreeingCleanupFunction { ptr: ptr, } as @CleanupFunction } heap_exchange | heap_exchange_closure => { @ExchangeHeapFreeingCleanupFunction { ptr: ptr, } as @CleanupFunction } }; in_scope_cx(cx, None, |scope_info| { scope_info.cleanups.push(clean_temp(ptr, free_fn, normal_exit_and_unwind)); grow_scope_clean(scope_info); }) } // Note that this only works for temporaries. We should, at some point, move // to a system where we can also cancel the cleanup on local variables, but // this will be more involved. For now, we simply zero out the local, and the // drop glue checks whether it is zero. pub fn revoke_clean(cx: @mut Block, val: ValueRef) { in_scope_cx(cx, None, |scope_info| { let cleanup_pos = scope_info.cleanups.iter().position( |cu| match *cu { clean_temp(v, _, _) if v == val => true, _ => false }); for i in cleanup_pos.iter() { scope_info.cleanups = vec::append(scope_info.cleanups.slice(0u, *i).to_owned(), scope_info.cleanups.slice(*i + 1u, scope_info.cleanups.len())); shrink_scope_clean(scope_info, *i); } }) } pub fn block_cleanups(bcx: &mut Block) -> ~[cleanup] { match bcx.scope { None => ~[], Some(inf) => inf.cleanups.clone(), } } pub struct ScopeInfo { parent: Option<@mut ScopeInfo>, loop_break: Option<@mut Block>, loop_label: Option, // A list of functions that must be run at when leaving this // block, cleaning up any variables that were introduced in the // block. cleanups: ~[cleanup], // Existing cleanup paths that may be reused, indexed by destination and // cleared when the set of cleanups changes. cleanup_paths: ~[cleanup_path], // Unwinding landing pad. Also cleared when cleanups change. landing_pad: Option, // info about the AST node this scope originated from, if any node_info: Option, } impl ScopeInfo { pub fn empty_cleanups(&mut self) -> bool { self.cleanups.is_empty() } } pub trait get_node_info { fn info(&self) -> Option; } impl get_node_info for ast::Expr { fn info(&self) -> Option { Some(NodeInfo {id: self.id, callee_id: self.get_callee_id(), span: self.span}) } } impl get_node_info for ast::Block { fn info(&self) -> Option { Some(NodeInfo {id: self.id, callee_id: None, span: self.span}) } } impl get_node_info for Option<@ast::Expr> { fn info(&self) -> Option { self.as_ref().and_then(|s| s.info()) } } pub struct NodeInfo { id: ast::NodeId, callee_id: Option, span: Span } // Basic block context. We create a block context for each basic block // (single-entry, single-exit sequence of instructions) we generate from Rust // code. Each basic block we generate is attached to a function, typically // with many basic blocks per function. All the basic blocks attached to a // function are organized as a directed graph. pub struct Block { // The BasicBlockRef returned from a call to // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic // block to the function pointed to by llfn. We insert // instructions into that block by way of this block context. // The block pointing to this one in the function's digraph. llbb: BasicBlockRef, terminated: bool, unreachable: bool, parent: Option<@mut Block>, // The current scope within this basic block scope: Option<@mut ScopeInfo>, // Is this block part of a landing pad? is_lpad: bool, // info about the AST node this block originated from, if any node_info: Option, // The function context for the function to which this block is // attached. fcx: @mut FunctionContext } impl Block { pub fn new(llbb: BasicBlockRef, parent: Option<@mut Block>, is_lpad: bool, node_info: Option, fcx: @mut FunctionContext) -> Block { Block { llbb: llbb, terminated: false, unreachable: false, parent: parent, scope: None, is_lpad: is_lpad, node_info: node_info, fcx: fcx } } pub fn ccx(&self) -> @mut CrateContext { self.fcx.ccx } pub fn tcx(&self) -> ty::ctxt { self.fcx.ccx.tcx } pub fn sess(&self) -> Session { self.fcx.ccx.sess } pub fn ident(&self, ident: Ident) -> @str { token::ident_to_str(&ident) } pub fn node_id_to_str(&self, id: ast::NodeId) -> ~str { ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr()) } pub fn expr_to_str(&self, e: &ast::Expr) -> ~str { e.repr(self.tcx()) } pub fn expr_is_lval(&self, e: &ast::Expr) -> bool { ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e) } pub fn expr_kind(&self, e: &ast::Expr) -> ty::ExprKind { ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e) } pub fn def(&self, nid: ast::NodeId) -> ast::Def { match self.tcx().def_map.find(&nid) { Some(&v) => v, None => { self.tcx().sess.bug(format!( "No def associated with node id {:?}", nid)); } } } pub fn val_to_str(&self, val: ValueRef) -> ~str { self.ccx().tn.val_to_str(val) } pub fn llty_str(&self, ty: Type) -> ~str { self.ccx().tn.type_to_str(ty) } pub fn ty_to_str(&self, t: ty::t) -> ~str { t.repr(self.tcx()) } pub fn to_str(&self) -> ~str { unsafe { match self.node_info { Some(node_info) => format!("[block {}]", node_info.id), None => format!("[block {}]", transmute::<&Block, *Block>(self)), } } } } pub struct Result { bcx: @mut Block, val: ValueRef } pub fn rslt(bcx: @mut Block, val: ValueRef) -> Result { Result {bcx: bcx, val: val} } impl Result { pub fn unpack(&self, bcx: &mut @mut Block) -> ValueRef { *bcx = self.bcx; return self.val; } } pub fn val_ty(v: ValueRef) -> Type { unsafe { Type::from_ref(llvm::LLVMTypeOf(v)) } } pub fn in_scope_cx(cx: @mut Block, scope_id: Option, f: |si: &mut ScopeInfo|) { let mut cur = cx; let mut cur_scope = cur.scope; loop { cur_scope = match cur_scope { Some(inf) => match scope_id { Some(wanted) => match inf.node_info { Some(NodeInfo { id: actual, _ }) if wanted == actual => { debug!("in_scope_cx: selected cur={} (cx={})", cur.to_str(), cx.to_str()); f(inf); return; }, _ => inf.parent, }, None => { debug!("in_scope_cx: selected cur={} (cx={})", cur.to_str(), cx.to_str()); f(inf); return; } }, None => { cur = block_parent(cur); cur.scope } } } } pub fn block_parent(cx: @mut Block) -> @mut Block { match cx.parent { Some(b) => b, None => cx.sess().bug(format!("block_parent called on root block {:?}", cx)) } } // Let T be the content of a box @T. tuplify_box_ty(t) returns the // representation of @T as a tuple (i.e., the ty::t version of what T_box() // returns). pub fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let ptr = ty::mk_ptr( tcx, ty::mt {ty: ty::mk_i8(), mutbl: ast::MutImmutable} ); return ty::mk_tup(tcx, ~[ty::mk_uint(), ty::mk_type(tcx), ptr, ptr, t]); } // LLVM constant constructors. pub fn C_null(t: Type) -> ValueRef { unsafe { llvm::LLVMConstNull(t.to_ref()) } } pub fn C_undef(t: Type) -> ValueRef { unsafe { llvm::LLVMGetUndef(t.to_ref()) } } pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef { unsafe { llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool) } } pub fn C_floating(s: &str, t: Type) -> ValueRef { unsafe { s.with_c_str(|buf| llvm::LLVMConstRealOfString(t.to_ref(), buf)) } } pub fn C_nil() -> ValueRef { C_struct([], false) } pub fn C_bool(val: bool) -> ValueRef { C_integral(Type::bool(), val as u64, false) } pub fn C_i1(val: bool) -> ValueRef { C_integral(Type::i1(), val as u64, false) } pub fn C_i32(i: i32) -> ValueRef { return C_integral(Type::i32(), i as u64, true); } pub fn C_i64(i: i64) -> ValueRef { return C_integral(Type::i64(), i as u64, true); } pub fn C_u64(i: u64) -> ValueRef { return C_integral(Type::i64(), i, false); } pub fn C_int(cx: &CrateContext, i: int) -> ValueRef { return C_integral(cx.int_type, i as u64, true); } pub fn C_uint(cx: &CrateContext, i: uint) -> ValueRef { return C_integral(cx.int_type, i as u64, false); } pub fn C_u8(i: uint) -> ValueRef { return C_integral(Type::i8(), i as u64, false); } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. pub fn C_cstr(cx: &mut CrateContext, s: @str) -> ValueRef { unsafe { match cx.const_cstr_cache.find_equiv(&s) { Some(&llval) => return llval, None => () } let sc = s.as_imm_buf(|buf, buflen| { llvm::LLVMConstStringInContext(cx.llcx, buf as *c_char, buflen as c_uint, False) }); let gsym = token::gensym("str"); let g = format!("str{}", gsym).with_c_str(|buf| { llvm::LLVMAddGlobal(cx.llmod, val_ty(sc).to_ref(), buf) }); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage); cx.const_cstr_cache.insert(s, g); return g; } } // NB: Do not use `do_spill_noroot` to make this into a constant string, or // you will be kicked off fast isel. See issue #4352 for an example of this. pub fn C_estr_slice(cx: &mut CrateContext, s: @str) -> ValueRef { unsafe { let len = s.len(); let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), Type::i8p().to_ref()); C_struct([cs, C_uint(cx, len)], false) } } pub fn C_binary_slice(cx: &mut CrateContext, data: &[u8]) -> ValueRef { unsafe { let len = data.len(); let lldata = C_bytes(data); let gsym = token::gensym("binary"); let g = format!("binary{}", gsym).with_c_str(|buf| { llvm::LLVMAddGlobal(cx.llmod, val_ty(lldata).to_ref(), buf) }); llvm::LLVMSetInitializer(g, lldata); llvm::LLVMSetGlobalConstant(g, True); lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage); let cs = llvm::LLVMConstPointerCast(g, Type::i8p().to_ref()); C_struct([cs, C_uint(cx, len)], false) } } pub fn C_zero_byte_arr(size: uint) -> ValueRef { unsafe { let mut i = 0u; let mut elts: ~[ValueRef] = ~[]; while i < size { elts.push(C_u8(0u)); i += 1u; } return llvm::LLVMConstArray(Type::i8().to_ref(), vec::raw::to_ptr(elts), elts.len() as c_uint); } } pub fn C_struct(elts: &[ValueRef], packed: bool) -> ValueRef { unsafe { elts.as_imm_buf(|ptr, len| { llvm::LLVMConstStructInContext(base::task_llcx(), ptr, len as c_uint, packed as Bool) }) } } pub fn C_named_struct(T: Type, elts: &[ValueRef]) -> ValueRef { unsafe { elts.as_imm_buf(|ptr, len| { llvm::LLVMConstNamedStruct(T.to_ref(), ptr, len as c_uint) }) } } pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef { unsafe { return llvm::LLVMConstArray(ty.to_ref(), vec::raw::to_ptr(elts), elts.len() as c_uint); } } pub fn C_bytes(bytes: &[u8]) -> ValueRef { unsafe { let ptr = cast::transmute(vec::raw::to_ptr(bytes)); return llvm::LLVMConstStringInContext(base::task_llcx(), ptr, bytes.len() as c_uint, True); } } pub fn get_param(fndecl: ValueRef, param: uint) -> ValueRef { unsafe { llvm::LLVMGetParam(fndecl, param as c_uint) } } pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint]) -> ValueRef { unsafe { let r = us.as_imm_buf(|p, len| { llvm::LLVMConstExtractValue(v, p, len as c_uint) }); debug!("const_get_elt(v={}, us={:?}, r={})", cx.tn.val_to_str(v), us, cx.tn.val_to_str(r)); return r; } } pub fn is_const(v: ValueRef) -> bool { unsafe { llvm::LLVMIsConstant(v) == True } } pub fn const_to_int(v: ValueRef) -> c_longlong { unsafe { llvm::LLVMConstIntGetSExtValue(v) } } pub fn const_to_uint(v: ValueRef) -> c_ulonglong { unsafe { llvm::LLVMConstIntGetZExtValue(v) } } pub fn is_undef(val: ValueRef) -> bool { unsafe { llvm::LLVMIsUndef(val) != False } } pub fn is_null(val: ValueRef) -> bool { unsafe { llvm::LLVMIsNull(val) != False } } // Used to identify cached monomorphized functions and vtables #[deriving(Eq,IterBytes)] pub enum mono_param_id { mono_precise(ty::t, Option<@~[mono_id]>), mono_any, mono_repr(uint /* size */, uint /* align */, MonoDataClass, datum::DatumMode), } #[deriving(Eq,IterBytes)] pub enum MonoDataClass { MonoBits, // Anything not treated differently from arbitrary integer data MonoNonNull, // Non-null pointers (used for optional-pointer optimization) // FIXME(#3547)---scalars and floats are // treated differently in most ABIs. But we // should be doing something more detailed // here. MonoFloat } pub fn mono_data_classify(t: ty::t) -> MonoDataClass { match ty::get(t).sty { ty::ty_float(_) => MonoFloat, ty::ty_rptr(*) | ty::ty_uniq(*) | ty::ty_box(*) | ty::ty_opaque_box(*) | ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) | ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) | ty::ty_bare_fn(*) => MonoNonNull, // Is that everything? Would closures or slices qualify? _ => MonoBits } } #[deriving(Eq,IterBytes)] pub struct mono_id_ { def: ast::DefId, params: ~[mono_param_id] } pub type mono_id = @mono_id_; pub fn umax(cx: @mut Block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); return build::Select(cx, cond, b, a); } pub fn umin(cx: @mut Block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); return build::Select(cx, cond, a, b); } pub fn align_to(cx: @mut Block, off: ValueRef, align: ValueRef) -> ValueRef { let mask = build::Sub(cx, align, C_int(cx.ccx(), 1)); let bumped = build::Add(cx, off, mask); return build::And(cx, bumped, build::Not(cx, mask)); } pub fn path_str(sess: session::Session, p: &[path_elt]) -> ~str { let mut r = ~""; let mut first = true; for e in p.iter() { match *e { ast_map::path_name(s) | ast_map::path_mod(s) | ast_map::path_pretty_name(s, _) => { if first { first = false } else { r.push_str("::") } r.push_str(sess.str_of(s)); } } } r } pub fn monomorphize_type(bcx: &mut Block, t: ty::t) -> ty::t { match bcx.fcx.param_substs { Some(substs) => { ty::subst_tps(bcx.tcx(), substs.tys, substs.self_ty, t) } _ => { assert!(!ty::type_has_params(t)); assert!(!ty::type_has_self(t)); t } } } pub fn node_id_type(bcx: &mut Block, id: ast::NodeId) -> ty::t { let tcx = bcx.tcx(); let t = ty::node_id_to_type(tcx, id); monomorphize_type(bcx, t) } pub fn expr_ty(bcx: &mut Block, ex: &ast::Expr) -> ty::t { node_id_type(bcx, ex.id) } pub fn expr_ty_adjusted(bcx: &mut Block, ex: &ast::Expr) -> ty::t { let tcx = bcx.tcx(); let t = ty::expr_ty_adjusted(tcx, ex); monomorphize_type(bcx, t) } pub fn node_id_type_params(bcx: &mut Block, id: ast::NodeId) -> ~[ty::t] { let tcx = bcx.tcx(); let params = ty::node_id_to_type_params(tcx, id); if !params.iter().all(|t| !ty::type_needs_infer(*t)) { bcx.sess().bug( format!("Type parameters for node {} include inference types: {}", id, params.map(|t| bcx.ty_to_str(*t)).connect(","))); } match bcx.fcx.param_substs { Some(substs) => { params.iter().map(|t| { ty::subst_tps(tcx, substs.tys, substs.self_ty, *t) }).collect() } _ => params } } pub fn node_vtables(bcx: @mut Block, id: ast::NodeId) -> Option { let raw_vtables = bcx.ccx().maps.vtable_map.find(&id); raw_vtables.map(|vts| resolve_vtables_in_fn_ctxt(bcx.fcx, *vts)) } // Apply the typaram substitutions in the FunctionContext to some // vtables. This should eliminate any vtable_params. pub fn resolve_vtables_in_fn_ctxt(fcx: &FunctionContext, vts: typeck::vtable_res) -> typeck::vtable_res { resolve_vtables_under_param_substs(fcx.ccx.tcx, fcx.param_substs, vts) } pub fn resolve_vtables_under_param_substs(tcx: ty::ctxt, param_substs: Option<@param_substs>, vts: typeck::vtable_res) -> typeck::vtable_res { @vts.iter().map(|ds| resolve_param_vtables_under_param_substs(tcx, param_substs, *ds)) .collect() } pub fn resolve_param_vtables_under_param_substs( tcx: ty::ctxt, param_substs: Option<@param_substs>, ds: typeck::vtable_param_res) -> typeck::vtable_param_res { @ds.iter().map( |d| resolve_vtable_under_param_substs(tcx, param_substs, d)) .collect() } pub fn resolve_vtable_under_param_substs(tcx: ty::ctxt, param_substs: Option<@param_substs>, vt: &typeck::vtable_origin) -> typeck::vtable_origin { match *vt { typeck::vtable_static(trait_id, ref tys, sub) => { let tys = match param_substs { Some(substs) => { tys.iter().map(|t| { ty::subst_tps(tcx, substs.tys, substs.self_ty, *t) }).collect() } _ => tys.to_owned() }; typeck::vtable_static( trait_id, tys, resolve_vtables_under_param_substs(tcx, param_substs, sub)) } typeck::vtable_param(n_param, n_bound) => { match param_substs { Some(substs) => { find_vtable(tcx, substs, n_param, n_bound) } _ => { tcx.sess.bug(format!( "resolve_vtable_under_param_substs: asked to lookup \ but no vtables in the fn_ctxt!")) } } } } } pub fn find_vtable(tcx: ty::ctxt, ps: ¶m_substs, n_param: typeck::param_index, n_bound: uint) -> typeck::vtable_origin { debug!("find_vtable(n_param={:?}, n_bound={}, ps={})", n_param, n_bound, ps.repr(tcx)); let param_bounds = match n_param { typeck::param_self => ps.self_vtables.expect("self vtables missing"), typeck::param_numbered(n) => { let tables = ps.vtables .expect("vtables missing where they are needed"); tables[n] } }; param_bounds[n_bound].clone() } pub fn dummy_substs(tps: ~[ty::t]) -> ty::substs { substs { regions: ty::ErasedRegions, self_ty: None, tps: tps } } pub fn filename_and_line_num_from_span(bcx: @mut Block, span: Span) -> (ValueRef, ValueRef) { let loc = bcx.sess().parse_sess.cm.lookup_char_pos(span.lo); let filename_cstr = C_cstr(bcx.ccx(), loc.file.name); let filename = build::PointerCast(bcx, filename_cstr, Type::i8p()); let line = C_int(bcx.ccx(), loc.line as int); (filename, line) } // Casts a Rust bool value to an i1. pub fn bool_to_i1(bcx: @mut Block, llval: ValueRef) -> ValueRef { build::ICmp(bcx, lib::llvm::IntNE, llval, C_bool(false)) } pub fn langcall(bcx: @mut Block, span: Option, msg: &str, li: LangItem) -> ast::DefId { match bcx.tcx().lang_items.require(li) { Ok(id) => id, Err(s) => { let msg = format!("{} {}", msg, s); match span { Some(span) => { bcx.tcx().sess.span_fatal(span, msg); } None => { bcx.tcx().sess.fatal(msg); } } } } }