// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use T = self::inst::T; use to_str::ToStr; use from_str::FromStr; use num::{ToStrRadix, FromStrRadix}; use num::strconv; use num; use prelude::*; pub use cmp::{min, max}; pub static bits : uint = inst::bits; pub static bytes : uint = (inst::bits / 8); pub static min_value: T = (-1 as T) << (bits - 1); pub static max_value: T = min_value - 1 as T; #[inline(always)] pub fn add(x: T, y: T) -> T { x + y } #[inline(always)] pub fn sub(x: T, y: T) -> T { x - y } #[inline(always)] pub fn mul(x: T, y: T) -> T { x * y } #[inline(always)] pub fn quot(x: T, y: T) -> T { x / y } /** * Returns the remainder of y / x. * * # Examples * ~~~ * assert!(int::rem(5 / 2) == 1); * ~~~ * * When faced with negative numbers, the result copies the sign of the * dividend. * * ~~~ * assert!(int::rem(2 / -3) == 2); * ~~~ * * ~~~ * assert!(int::rem(-2 / 3) == -2); * ~~~ * */ #[inline(always)] pub fn rem(x: T, y: T) -> T { x % y } #[inline(always)] pub fn lt(x: T, y: T) -> bool { x < y } #[inline(always)] pub fn le(x: T, y: T) -> bool { x <= y } #[inline(always)] pub fn eq(x: T, y: T) -> bool { x == y } #[inline(always)] pub fn ne(x: T, y: T) -> bool { x != y } #[inline(always)] pub fn ge(x: T, y: T) -> bool { x >= y } #[inline(always)] pub fn gt(x: T, y: T) -> bool { x > y } #[inline(always)] pub fn is_positive(x: T) -> bool { x > 0 as T } #[inline(always)] pub fn is_negative(x: T) -> bool { x < 0 as T } #[inline(always)] pub fn is_nonpositive(x: T) -> bool { x <= 0 as T } #[inline(always)] pub fn is_nonnegative(x: T) -> bool { x >= 0 as T } /** * Iterate over the range [`lo`..`hi`) * * # Arguments * * * `lo` - lower bound, inclusive * * `hi` - higher bound, exclusive * * # Examples * ~~~ * let mut sum = 0; * for int::range(1, 5) |i| { * sum += i; * } * assert!(sum == 10); * ~~~ */ #[inline(always)] /// Iterate over the range [`start`,`start`+`step`..`stop`) pub fn range_step(start: T, stop: T, step: T, it: &fn(T) -> bool) { let mut i = start; if step == 0 { fail!(~"range_step called with step == 0"); } else if step > 0 { // ascending while i < stop { if !it(i) { break } // avoiding overflow. break if i + step > max_value if i > max_value - step { break; } i += step; } } else { // descending while i > stop { if !it(i) { break } // avoiding underflow. break if i + step < min_value if i < min_value - step { break; } i += step; } } } #[inline(always)] /// Iterate over the range [`lo`..`hi`) pub fn range(lo: T, hi: T, it: &fn(T) -> bool) { range_step(lo, hi, 1 as T, it); } #[inline(always)] /// Iterate over the range [`hi`..`lo`) pub fn range_rev(hi: T, lo: T, it: &fn(T) -> bool) { range_step(hi, lo, -1 as T, it); } /// Computes the bitwise complement #[inline(always)] pub fn compl(i: T) -> T { -1 as T ^ i } /// Computes the absolute value #[inline(always)] pub fn abs(i: T) -> T { if is_negative(i) { -i } else { i } } #[cfg(notest)] impl Ord for T { #[inline(always)] fn lt(&self, other: &T) -> bool { return (*self) < (*other); } #[inline(always)] fn le(&self, other: &T) -> bool { return (*self) <= (*other); } #[inline(always)] fn ge(&self, other: &T) -> bool { return (*self) >= (*other); } #[inline(always)] fn gt(&self, other: &T) -> bool { return (*self) > (*other); } } #[cfg(notest)] impl Eq for T { #[inline(always)] fn eq(&self, other: &T) -> bool { return (*self) == (*other); } #[inline(always)] fn ne(&self, other: &T) -> bool { return (*self) != (*other); } } impl num::Zero for T { #[inline(always)] fn zero() -> T { 0 } } impl num::One for T { #[inline(always)] fn one() -> T { 1 } } #[cfg(notest)] impl Add for T { fn add(&self, other: &T) -> T { *self + *other } } #[cfg(notest)] impl Sub for T { fn sub(&self, other: &T) -> T { *self - *other } } #[cfg(notest)] impl Mul for T { fn mul(&self, other: &T) -> T { *self * *other } } #[cfg(stage0,notest)] impl Div for T { fn div(&self, other: &T) -> T { *self / *other } } #[cfg(stage1,notest)] #[cfg(stage2,notest)] #[cfg(stage3,notest)] impl Quot for T { #[inline(always)] fn quot(&self, other: &T) -> T { *self / *other } } #[cfg(stage0,notest)] impl Modulo for T { fn modulo(&self, other: &T) -> T { *self % *other } } #[cfg(stage1,notest)] #[cfg(stage2,notest)] #[cfg(stage3,notest)] impl Rem for T { #[inline(always)] fn rem(&self, other: &T) -> T { *self % *other } } #[cfg(notest)] impl Neg for T { fn neg(&self) -> T { -*self } } #[cfg(notest)] impl BitOr for T { #[inline(always)] fn bitor(&self, other: &T) -> T { *self | *other } } #[cfg(notest)] impl BitAnd for T { #[inline(always)] fn bitand(&self, other: &T) -> T { *self & *other } } #[cfg(notest)] impl BitXor for T { #[inline(always)] fn bitxor(&self, other: &T) -> T { *self ^ *other } } #[cfg(notest)] impl Shl for T { #[inline(always)] fn shl(&self, other: &T) -> T { *self << *other } } #[cfg(notest)] impl Shr for T { #[inline(always)] fn shr(&self, other: &T) -> T { *self >> *other } } #[cfg(notest)] impl Not for T { #[inline(always)] fn not(&self) -> T { !*self } } // String conversion functions and impl str -> num /// Parse a string as a number in base 10. #[inline(always)] pub fn from_str(s: &str) -> Option { strconv::from_str_common(s, 10u, true, false, false, strconv::ExpNone, false, false) } /// Parse a string as a number in the given base. #[inline(always)] pub fn from_str_radix(s: &str, radix: uint) -> Option { strconv::from_str_common(s, radix, true, false, false, strconv::ExpNone, false, false) } /// Parse a byte slice as a number in the given base. #[inline(always)] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option { strconv::from_str_bytes_common(buf, radix, true, false, false, strconv::ExpNone, false, false) } impl FromStr for T { #[inline(always)] fn from_str(s: &str) -> Option { from_str(s) } } impl FromStrRadix for T { #[inline(always)] fn from_str_radix(s: &str, radix: uint) -> Option { from_str_radix(s, radix) } } // String conversion functions and impl num -> str /// Convert to a string as a byte slice in a given base. #[inline(always)] pub fn to_str_bytes(n: T, radix: uint, f: &fn(v: &[u8]) -> U) -> U { let (buf, _) = strconv::to_str_bytes_common(&n, radix, false, strconv::SignNeg, strconv::DigAll); f(buf) } /// Convert to a string in base 10. #[inline(always)] pub fn to_str(num: T) -> ~str { let (buf, _) = strconv::to_str_common(&num, 10u, false, strconv::SignNeg, strconv::DigAll); buf } /// Convert to a string in a given base. #[inline(always)] pub fn to_str_radix(num: T, radix: uint) -> ~str { let (buf, _) = strconv::to_str_common(&num, radix, false, strconv::SignNeg, strconv::DigAll); buf } impl ToStr for T { #[inline(always)] fn to_str(&self) -> ~str { to_str(*self) } } impl ToStrRadix for T { #[inline(always)] fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } #[cfg(test)] mod tests { use super::*; use super::inst::T; use prelude::*; #[test] fn test_bitwise_ops() { assert_eq!(0b1110 as T, (0b1100 as T).bitor(&(0b1010 as T))); assert_eq!(0b1000 as T, (0b1100 as T).bitand(&(0b1010 as T))); assert_eq!(0b0110 as T, (0b1100 as T).bitxor(&(0b1010 as T))); assert_eq!(0b1110 as T, (0b0111 as T).shl(&(1 as T))); assert_eq!(0b0111 as T, (0b1110 as T).shr(&(1 as T))); assert_eq!(-(0b11 as T) - (1 as T), (0b11 as T).not()); } #[test] fn test_from_str() { assert_eq!(from_str(~"0"), Some(0 as T)); assert_eq!(from_str(~"3"), Some(3 as T)); assert_eq!(from_str(~"10"), Some(10 as T)); assert_eq!(i32::from_str(~"123456789"), Some(123456789 as i32)); assert_eq!(from_str(~"00100"), Some(100 as T)); assert_eq!(from_str(~"-1"), Some(-1 as T)); assert_eq!(from_str(~"-3"), Some(-3 as T)); assert_eq!(from_str(~"-10"), Some(-10 as T)); assert_eq!(i32::from_str(~"-123456789"), Some(-123456789 as i32)); assert_eq!(from_str(~"-00100"), Some(-100 as T)); assert!(from_str(~" ").is_none()); assert!(from_str(~"x").is_none()); } #[test] fn test_parse_bytes() { use str::to_bytes; assert_eq!(parse_bytes(to_bytes(~"123"), 10u), Some(123 as T)); assert_eq!(parse_bytes(to_bytes(~"1001"), 2u), Some(9 as T)); assert_eq!(parse_bytes(to_bytes(~"123"), 8u), Some(83 as T)); assert_eq!(i32::parse_bytes(to_bytes(~"123"), 16u), Some(291 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"ffff"), 16u), Some(65535 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"FFFF"), 16u), Some(65535 as i32)); assert_eq!(parse_bytes(to_bytes(~"z"), 36u), Some(35 as T)); assert_eq!(parse_bytes(to_bytes(~"Z"), 36u), Some(35 as T)); assert_eq!(parse_bytes(to_bytes(~"-123"), 10u), Some(-123 as T)); assert_eq!(parse_bytes(to_bytes(~"-1001"), 2u), Some(-9 as T)); assert_eq!(parse_bytes(to_bytes(~"-123"), 8u), Some(-83 as T)); assert_eq!(i32::parse_bytes(to_bytes(~"-123"), 16u), Some(-291 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"-ffff"), 16u), Some(-65535 as i32)); assert_eq!(i32::parse_bytes(to_bytes(~"-FFFF"), 16u), Some(-65535 as i32)); assert_eq!(parse_bytes(to_bytes(~"-z"), 36u), Some(-35 as T)); assert_eq!(parse_bytes(to_bytes(~"-Z"), 36u), Some(-35 as T)); assert!(parse_bytes(to_bytes(~"Z"), 35u).is_none()); assert!(parse_bytes(to_bytes(~"-9"), 2u).is_none()); } #[test] fn test_to_str() { assert_eq!(to_str_radix(0 as T, 10u), ~"0"); assert_eq!(to_str_radix(1 as T, 10u), ~"1"); assert_eq!(to_str_radix(-1 as T, 10u), ~"-1"); assert_eq!(to_str_radix(127 as T, 16u), ~"7f"); assert_eq!(to_str_radix(100 as T, 10u), ~"100"); } #[test] fn test_int_to_str_overflow() { let mut i8_val: i8 = 127_i8; assert_eq!(i8::to_str(i8_val), ~"127"); i8_val += 1 as i8; assert_eq!(i8::to_str(i8_val), ~"-128"); let mut i16_val: i16 = 32_767_i16; assert_eq!(i16::to_str(i16_val), ~"32767"); i16_val += 1 as i16; assert_eq!(i16::to_str(i16_val), ~"-32768"); let mut i32_val: i32 = 2_147_483_647_i32; assert_eq!(i32::to_str(i32_val), ~"2147483647"); i32_val += 1 as i32; assert_eq!(i32::to_str(i32_val), ~"-2147483648"); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert_eq!(i64::to_str(i64_val), ~"9223372036854775807"); i64_val += 1 as i64; assert_eq!(i64::to_str(i64_val), ~"-9223372036854775808"); } #[test] fn test_int_from_str_overflow() { let mut i8_val: i8 = 127_i8; assert_eq!(i8::from_str(~"127"), Some(i8_val)); assert!(i8::from_str(~"128").is_none()); i8_val += 1 as i8; assert_eq!(i8::from_str(~"-128"), Some(i8_val)); assert!(i8::from_str(~"-129").is_none()); let mut i16_val: i16 = 32_767_i16; assert_eq!(i16::from_str(~"32767"), Some(i16_val)); assert!(i16::from_str(~"32768").is_none()); i16_val += 1 as i16; assert_eq!(i16::from_str(~"-32768"), Some(i16_val)); assert!(i16::from_str(~"-32769").is_none()); let mut i32_val: i32 = 2_147_483_647_i32; assert_eq!(i32::from_str(~"2147483647"), Some(i32_val)); assert!(i32::from_str(~"2147483648").is_none()); i32_val += 1 as i32; assert_eq!(i32::from_str(~"-2147483648"), Some(i32_val)); assert!(i32::from_str(~"-2147483649").is_none()); let mut i64_val: i64 = 9_223_372_036_854_775_807_i64; assert_eq!(i64::from_str(~"9223372036854775807"), Some(i64_val)); assert!(i64::from_str(~"9223372036854775808").is_none()); i64_val += 1 as i64; assert_eq!(i64::from_str(~"-9223372036854775808"), Some(i64_val)); assert!(i64::from_str(~"-9223372036854775809").is_none()); } #[test] fn test_ranges() { let mut l = ~[]; for range(0,3) |i| { l.push(i); } for range_rev(13,10) |i| { l.push(i); } for range_step(20,26,2) |i| { l.push(i); } for range_step(36,30,-2) |i| { l.push(i); } for range_step(max_value - 2, max_value, 2) |i| { l.push(i); } for range_step(max_value - 3, max_value, 2) |i| { l.push(i); } for range_step(min_value + 2, min_value, -2) |i| { l.push(i); } for range_step(min_value + 3, min_value, -2) |i| { l.push(i); } assert_eq!(l, ~[0,1,2, 13,12,11, 20,22,24, 36,34,32, max_value-2, max_value-3,max_value-1, min_value+2, min_value+3,min_value+1]); // None of the `fail`s should execute. for range(10,0) |_i| { fail!(~"unreachable"); } for range_rev(0,10) |_i| { fail!(~"unreachable"); } for range_step(10,0,1) |_i| { fail!(~"unreachable"); } for range_step(0,10,-1) |_i| { fail!(~"unreachable"); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step() { for range_step(0,10,0) |_i| {} } }