import std::{str, option, int, map}; import codemap::span; import ast::*; fn respan(sp: span, t: T) -> spanned { ret {node: t, span: sp}; } fn new_node_hash() -> map::hashmap { fn node_id_hash(&&i: node_id) -> uint { ret int::hash(i as int); } fn node_id_eq(&&a: node_id, &&b: node_id) -> bool { ret int::eq(a as int, b as int); } ret map::mk_hashmap(node_id_hash, node_id_eq); } /* assuming that we're not in macro expansion */ fn mk_sp(lo: uint, hi: uint) -> span { ret {lo: lo, hi: hi, expanded_from: codemap::os_none}; } // make this a const, once the compiler supports it fn dummy_sp() -> span { ret mk_sp(0u, 0u); } fn path_name(p: @path) -> str { path_name_i(p.node.idents) } fn path_name_i(idents: [ident]) -> str { str::connect(idents, "::") } fn local_def(id: node_id) -> def_id { ret {crate: local_crate, node: id}; } fn variant_def_ids(d: def) -> {tg: def_id, var: def_id} { alt d { def_variant(tag_id, var_id) { ret {tg: tag_id, var: var_id}; } } } fn def_id_of_def(d: def) -> def_id { alt d { def_fn(id, _) { ret id; } def_obj_field(id, _) { ret id; } def_mod(id) { ret id; } def_native_mod(id) { ret id; } def_const(id) { ret id; } def_arg(id, _) { ret id; } def_local(id, _) { ret id; } def_variant(_, id) { ret id; } def_ty(id) { ret id; } def_ty_param(_, _) { fail; } def_binding(id) { ret id; } def_use(id) { ret id; } def_native_ty(id) { ret id; } def_native_fn(id, _) { ret id; } def_upvar(id, _, _) { ret id; } } } type pat_id_map = std::map::hashmap; // This is used because same-named variables in alternative patterns need to // use the node_id of their namesake in the first pattern. fn pat_id_map(pat: @pat) -> pat_id_map { let map = std::map::new_str_hash::(); pat_bindings(pat) {|bound| let name = alt bound.node { pat_bind(n) { n } }; map.insert(name, bound.id); }; ret map; } // FIXME: could return a constrained type fn pat_bindings(pat: @pat, it: block(@pat)) { alt pat.node { pat_bind(_) { it(pat); } pat_tag(_, sub) { for p in sub { pat_bindings(p, it); } } pat_rec(fields, _) { for f in fields { pat_bindings(f.pat, it); } } pat_tup(elts) { for elt in elts { pat_bindings(elt, it); } } pat_box(sub) { pat_bindings(sub, it); } pat_uniq(sub) { pat_bindings(sub, it); } pat_wild. | pat_lit(_) | pat_range(_, _) { } } } fn pat_binding_ids(pat: @pat) -> [node_id] { let found = []; pat_bindings(pat) {|b| found += [b.id]; }; ret found; } fn binop_to_str(op: binop) -> str { alt op { add. { ret "+"; } sub. { ret "-"; } mul. { ret "*"; } div. { ret "/"; } rem. { ret "%"; } and. { ret "&&"; } or. { ret "||"; } bitxor. { ret "^"; } bitand. { ret "&"; } bitor. { ret "|"; } lsl. { ret "<<"; } lsr. { ret ">>"; } asr. { ret ">>>"; } eq. { ret "=="; } lt. { ret "<"; } le. { ret "<="; } ne. { ret "!="; } ge. { ret ">="; } gt. { ret ">"; } } } pure fn lazy_binop(b: binop) -> bool { alt b { and. { true } or. { true } _ { false } } } fn unop_to_str(op: unop) -> str { alt op { box(mt) { if mt == mut { ret "@mutable "; } ret "@"; } uniq(mt) { if mt == mut { ret "~mutable "; } ret "~"; } deref. { ret "*"; } not. { ret "!"; } neg. { ret "-"; } } } fn is_path(e: @expr) -> bool { ret alt e.node { expr_path(_) { true } _ { false } }; } fn int_ty_to_str(t: int_ty) -> str { alt t { ty_i. { "" } ty_i8. { "i8" } ty_i16. { "i16" } ty_i32. { "i32" } ty_i64. { "i64" } } } fn int_ty_max(t: int_ty) -> u64 { alt t { ty_i8. { 0x80u64 } ty_i16. { 0x800u64 } ty_char. | ty_i32. { 0x80000000u64 } ty_i64. { 0x8000000000000000u64 } } } fn uint_ty_to_str(t: uint_ty) -> str { alt t { ty_u. { "" } ty_u8. { "u8" } ty_u16. { "u16" } ty_u32. { "u32" } ty_u64. { "u64" } } } fn uint_ty_max(t: uint_ty) -> u64 { alt t { ty_u8. { 0xffu64 } ty_u16. { 0xffffu64 } ty_u32. { 0xffffffffu64 } ty_u64. { 0xffffffffffffffffu64 } } } fn float_ty_to_str(t: float_ty) -> str { alt t { ty_f. { "" } ty_f32. { "f32" } ty_f64. { "f64" } } } fn is_exported(i: ident, m: _mod) -> bool { let nonlocal = true; for it: @item in m.items { if it.ident == i { nonlocal = false; } alt it.node { item_tag(variants, _) { for v: variant in variants { if v.node.name == i { nonlocal = false; } } } _ { } } if !nonlocal { break; } } let count = 0u; for vi: @view_item in m.view_items { alt vi.node { view_item_export(ids, _) { for id in ids { if str::eq(i, id) { ret true; } } count += 1u; } _ {/* fall through */ } } } // If there are no declared exports then // everything not imported is exported // even if it's nonlocal (since it's explicit) ret count == 0u && !nonlocal; } pure fn is_call_expr(e: @expr) -> bool { alt e.node { expr_call(_, _, _) { true } _ { false } } } pure fn is_tail_call_expr(e: @expr) -> bool { alt e.node { expr_call(_, _, _) { true } expr_cast(inner_e, _) { is_call_expr(inner_e) } _ { false } } } fn is_constraint_arg(e: @expr) -> bool { alt e.node { expr_lit(_) { ret true; } expr_path(_) { ret true; } _ { ret false; } } } fn eq_ty(&&a: @ty, &&b: @ty) -> bool { ret std::box::ptr_eq(a, b); } fn hash_ty(&&t: @ty) -> uint { let res = (t.span.lo << 16u) + t.span.hi; ret res; } fn hash_def_id(&&id: def_id) -> uint { (id.crate as uint << 16u) + (id.node as uint) } fn eq_def_id(&&a: def_id, &&b: def_id) -> bool { a == b } fn new_def_id_hash() -> std::map::hashmap { std::map::mk_hashmap(hash_def_id, eq_def_id) } fn block_from_expr(e: @expr) -> blk { let blk_ = default_block([], option::some::<@expr>(e), e.id); ret {node: blk_, span: e.span}; } fn default_block(stmts1: [@stmt], expr1: option::t<@expr>, id1: node_id) -> blk_ { {view_items: [], stmts: stmts1, expr: expr1, id: id1, rules: default_blk} } fn obj_field_from_anon_obj_field(f: anon_obj_field) -> obj_field { ret {mut: f.mut, ty: f.ty, ident: f.ident, id: f.id}; } // This is a convenience function to transfor ternary expressions to if // expressions so that they can be treated the same fn ternary_to_if(e: @expr) -> @expr { alt e.node { expr_ternary(cond, then, els) { let then_blk = block_from_expr(then); let els_blk = block_from_expr(els); let els_expr = @{id: els.id, node: expr_block(els_blk), span: els.span}; ret @{id: e.id, node: expr_if(cond, then_blk, option::some(els_expr)), span: e.span}; } _ { fail; } } } fn ty_param_kind(tp: ty_param) -> kind { tp.kind } // FIXME this doesn't handle big integer/float literals correctly (nor does // the rest of our literal handling) tag const_val { const_float(float); const_int(i64); const_uint(u64); const_str(str); } fn eval_const_expr(e: @expr) -> const_val { fn fromb(b: bool) -> const_val { const_int(b as i64) } alt e.node { expr_unary(neg., inner) { alt eval_const_expr(inner) { const_float(f) { const_float(-f) } const_int(i) { const_int(-i) } const_uint(i) { const_uint(-i) } } } expr_unary(not., inner) { alt eval_const_expr(inner) { const_int(i) { const_int(!i) } const_uint(i) { const_uint(!i) } } } expr_binary(op, a, b) { alt (eval_const_expr(a), eval_const_expr(b)) { (const_float(a), const_float(b)) { alt op { add. { const_float(a + b) } sub. { const_float(a - b) } mul. { const_float(a * b) } div. { const_float(a / b) } rem. { const_float(a % b) } eq. { fromb(a == b) } lt. { fromb(a < b) } le. { fromb(a <= b) } ne. { fromb(a != b) } ge. { fromb(a >= b) } gt. { fromb(a > b) } } } (const_int(a), const_int(b)) { alt op { add. { const_int(a + b) } sub. { const_int(a - b) } mul. { const_int(a * b) } div. { const_int(a / b) } rem. { const_int(a % b) } and. | bitand. { const_int(a & b) } or. | bitor. { const_int(a | b) } bitxor. { const_int(a ^ b) } eq. { fromb(a == b) } lt. { fromb(a < b) } le. { fromb(a <= b) } ne. { fromb(a != b) } ge. { fromb(a >= b) } gt. { fromb(a > b) } } } (const_uint(a), const_uint(b)) { alt op { add. { const_uint(a + b) } sub. { const_uint(a - b) } mul. { const_uint(a * b) } div. { const_uint(a / b) } rem. { const_uint(a % b) } and. | bitand. { const_uint(a & b) } or. | bitor. { const_uint(a | b) } bitxor. { const_uint(a ^ b) } eq. { fromb(a == b) } lt. { fromb(a < b) } le. { fromb(a <= b) } ne. { fromb(a != b) } ge. { fromb(a >= b) } gt. { fromb(a > b) } } } } } expr_lit(lit) { lit_to_const(lit) } } } fn lit_to_const(lit: @lit) -> const_val { alt lit.node { lit_str(s) { const_str(s) } lit_int(n, _) { const_int(n) } lit_uint(n, _) { const_uint(n) } lit_float(n, _) { const_float(std::float::from_str(n)) } lit_nil. { const_int(0i64) } lit_bool(b) { const_int(b as i64) } } } fn compare_const_vals(a: const_val, b: const_val) -> int { alt (a, b) { (const_int(a), const_int(b)) { a == b ? 0 : a < b ? -1 : 1 } (const_uint(a), const_uint(b)) { a == b ? 0 : a < b ? -1 : 1 } (const_float(a), const_float(b)) { a == b ? 0 : a < b ? -1 : 1 } (const_str(a), const_str(b)) { a == b ? 0 : a < b ? -1 : 1 } } } fn compare_lit_exprs(a: @expr, b: @expr) -> int { compare_const_vals(eval_const_expr(a), eval_const_expr(b)) } fn lit_expr_eq(a: @expr, b: @expr) -> bool { compare_lit_exprs(a, b) == 0 } fn lit_eq(a: @lit, b: @lit) -> bool { compare_const_vals(lit_to_const(a), lit_to_const(b)) == 0 } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: