// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This file actually contains two passes related to regions. The first //! pass builds up the `scope_map`, which describes the parent links in //! the region hierarchy. The second pass infers which types must be //! region parameterized. //! //! Most of the documentation on regions can be found in //! `middle/typeck/infer/region_inference.rs` use front::map as ast_map; use session::Session; use util::nodemap::{FnvHashMap, NodeMap, NodeSet}; use middle::cstore::InlinedItem; use middle::ty::{self, Ty}; use std::cell::RefCell; use std::collections::hash_map::Entry; use std::fmt; use std::mem; use syntax::codemap::{self, Span}; use syntax::ast::{self, NodeId}; use rustc_front::hir; use rustc_front::intravisit::{self, Visitor, FnKind}; use rustc_front::hir::{Block, Item, FnDecl, Arm, Pat, Stmt, Expr, Local}; use rustc_front::util::stmt_id; #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Copy)] pub struct CodeExtent(u32); impl fmt::Debug for CodeExtent { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "CodeExtent({:?}", self.0)); try!(ty::tls::with_opt(|opt_tcx| { if let Some(tcx) = opt_tcx { let data = tcx.region_maps.code_extents.borrow()[self.0 as usize]; try!(write!(f, "/{:?}", data)); } Ok(()) })); write!(f, ")") } } /// The root of everything. I should be using NonZero or profiling /// instead of this (probably). pub const ROOT_CODE_EXTENT : CodeExtent = CodeExtent(0); /// A placeholder used in trans to stand for real code extents pub const DUMMY_CODE_EXTENT : CodeExtent = CodeExtent(1); /// CodeExtent represents a statically-describable extent that can be /// used to bound the lifetime/region for values. /// /// `Misc(node_id)`: Any AST node that has any extent at all has the /// `Misc(node_id)` extent. Other variants represent special cases not /// immediately derivable from the abstract syntax tree structure. /// /// `DestructionScope(node_id)` represents the extent of destructors /// implicitly-attached to `node_id` that run immediately after the /// expression for `node_id` itself. Not every AST node carries a /// `DestructionScope`, but those that are `terminating_scopes` do; /// see discussion with `RegionMaps`. /// /// `Remainder(BlockRemainder { block, statement_index })` represents /// the extent of user code running immediately after the initializer /// expression for the indexed statement, until the end of the block. /// /// So: the following code can be broken down into the extents beneath: /// ``` /// let a = f().g( 'b: { let x = d(); let y = d(); x.h(y) } ) ; /// ``` /// /// +-+ (D12.) /// +-+ (D11.) /// +---------+ (R10.) /// +-+ (D9.) /// +----------+ (M8.) /// +----------------------+ (R7.) /// +-+ (D6.) /// +----------+ (M5.) /// +-----------------------------------+ (M4.) /// +--------------------------------------------------+ (M3.) /// +--+ (M2.) /// +-----------------------------------------------------------+ (M1.) /// /// (M1.): Misc extent of the whole `let a = ...;` statement. /// (M2.): Misc extent of the `f()` expression. /// (M3.): Misc extent of the `f().g(..)` expression. /// (M4.): Misc extent of the block labelled `'b:`. /// (M5.): Misc extent of the `let x = d();` statement /// (D6.): DestructionScope for temporaries created during M5. /// (R7.): Remainder extent for block `'b:`, stmt 0 (let x = ...). /// (M8.): Misc Extent of the `let y = d();` statement. /// (D9.): DestructionScope for temporaries created during M8. /// (R10.): Remainder extent for block `'b:`, stmt 1 (let y = ...). /// (D11.): DestructionScope for temporaries and bindings from block `'b:`. /// (D12.): DestructionScope for temporaries created during M1 (e.g. f()). /// /// Note that while the above picture shows the destruction scopes /// as following their corresponding misc extents, in the internal /// data structures of the compiler the destruction scopes are /// represented as enclosing parents. This is sound because we use the /// enclosing parent relationship just to ensure that referenced /// values live long enough; phrased another way, the starting point /// of each range is not really the important thing in the above /// picture, but rather the ending point. /// /// FIXME (pnkfelix): This currently derives `PartialOrd` and `Ord` to /// placate the same deriving in `ty::FreeRegion`, but we may want to /// actually attach a more meaningful ordering to scopes than the one /// generated via deriving here. #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Debug, Copy)] pub enum CodeExtentData { Misc(ast::NodeId), // extent of parameters passed to a function or closure (they // outlive its body) ParameterScope { fn_id: ast::NodeId, body_id: ast::NodeId }, // extent of destructors for temporaries of node-id DestructionScope(ast::NodeId), // extent of code following a `let id = expr;` binding in a block Remainder(BlockRemainder) } /// extent of destructors for temporaries of node-id #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Debug, Copy)] pub struct DestructionScopeData { pub node_id: ast::NodeId } impl DestructionScopeData { pub fn new(node_id: ast::NodeId) -> DestructionScopeData { DestructionScopeData { node_id: node_id } } pub fn to_code_extent(&self, region_maps: &RegionMaps) -> CodeExtent { region_maps.lookup_code_extent( CodeExtentData::DestructionScope(self.node_id)) } } /// Represents a subscope of `block` for a binding that is introduced /// by `block.stmts[first_statement_index]`. Such subscopes represent /// a suffix of the block. Note that each subscope does not include /// the initializer expression, if any, for the statement indexed by /// `first_statement_index`. /// /// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`: /// /// * the subscope with `first_statement_index == 0` is scope of both /// `a` and `b`; it does not include EXPR_1, but does include /// everything after that first `let`. (If you want a scope that /// includes EXPR_1 as well, then do not use `CodeExtentData::Remainder`, /// but instead another `CodeExtent` that encompasses the whole block, /// e.g. `CodeExtentData::Misc`. /// /// * the subscope with `first_statement_index == 1` is scope of `c`, /// and thus does not include EXPR_2, but covers the `...`. #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Debug, Copy)] pub struct BlockRemainder { pub block: ast::NodeId, pub first_statement_index: u32, } impl CodeExtentData { /// Returns a node id associated with this scope. /// /// NB: likely to be replaced as API is refined; e.g. pnkfelix /// anticipates `fn entry_node_id` and `fn each_exit_node_id`. pub fn node_id(&self) -> ast::NodeId { match *self { CodeExtentData::Misc(node_id) => node_id, // These cases all return rough approximations to the // precise extent denoted by `self`. CodeExtentData::Remainder(br) => br.block, CodeExtentData::DestructionScope(node_id) => node_id, CodeExtentData::ParameterScope { fn_id: _, body_id } => body_id, } } } impl CodeExtent { #[inline] fn into_option(self) -> Option { if self == ROOT_CODE_EXTENT { None } else { Some(self) } } pub fn node_id(&self, region_maps: &RegionMaps) -> ast::NodeId { region_maps.code_extent_data(*self).node_id() } /// Returns the span of this CodeExtent. Note that in general the /// returned span may not correspond to the span of any node id in /// the AST. pub fn span(&self, region_maps: &RegionMaps, ast_map: &ast_map::Map) -> Option { match ast_map.find(self.node_id(region_maps)) { Some(ast_map::NodeBlock(ref blk)) => { match region_maps.code_extent_data(*self) { CodeExtentData::ParameterScope { .. } | CodeExtentData::Misc(_) | CodeExtentData::DestructionScope(_) => Some(blk.span), CodeExtentData::Remainder(r) => { assert_eq!(r.block, blk.id); // Want span for extent starting after the // indexed statement and ending at end of // `blk`; reuse span of `blk` and shift `lo` // forward to end of indexed statement. // // (This is the special case aluded to in the // doc-comment for this method) let stmt_span = blk.stmts[r.first_statement_index as usize].span; Some(Span { lo: stmt_span.hi, ..blk.span }) } } } Some(ast_map::NodeExpr(ref expr)) => Some(expr.span), Some(ast_map::NodeStmt(ref stmt)) => Some(stmt.span), Some(ast_map::NodeItem(ref item)) => Some(item.span), Some(_) | None => None, } } } /// The region maps encode information about region relationships. pub struct RegionMaps { code_extents: RefCell>, code_extent_interner: RefCell>, /// `scope_map` maps from a scope id to the enclosing scope id; /// this is usually corresponding to the lexical nesting, though /// in the case of closures the parent scope is the innermost /// conditional expression or repeating block. (Note that the /// enclosing scope id for the block associated with a closure is /// the closure itself.) scope_map: RefCell>, /// `var_map` maps from a variable or binding id to the block in /// which that variable is declared. var_map: RefCell>, /// `rvalue_scopes` includes entries for those expressions whose cleanup scope is /// larger than the default. The map goes from the expression id /// to the cleanup scope id. For rvalues not present in this /// table, the appropriate cleanup scope is the innermost /// enclosing statement, conditional expression, or repeating /// block (see `terminating_scopes`). rvalue_scopes: RefCell>, /// Encodes the hierarchy of fn bodies. Every fn body (including /// closures) forms its own distinct region hierarchy, rooted in /// the block that is the fn body. This map points from the id of /// that root block to the id of the root block for the enclosing /// fn, if any. Thus the map structures the fn bodies into a /// hierarchy based on their lexical mapping. This is used to /// handle the relationships between regions in a fn and in a /// closure defined by that fn. See the "Modeling closures" /// section of the README in middle::infer::region_inference for /// more details. fn_tree: RefCell>, } #[derive(Debug, Copy, Clone)] pub struct Context { /// the root of the current region tree. This is typically the id /// of the innermost fn body. Each fn forms its own disjoint tree /// in the region hierarchy. These fn bodies are themselves /// arranged into a tree. See the "Modeling closures" section of /// the README in middle::infer::region_inference for more /// details. root_id: Option, /// the scope that contains any new variables declared var_parent: CodeExtent, /// region parent of expressions etc parent: CodeExtent } struct RegionResolutionVisitor<'a> { sess: &'a Session, // Generated maps: region_maps: &'a RegionMaps, cx: Context, /// `terminating_scopes` is a set containing the ids of each /// statement, or conditional/repeating expression. These scopes /// are calling "terminating scopes" because, when attempting to /// find the scope of a temporary, by default we search up the /// enclosing scopes until we encounter the terminating scope. A /// conditional/repeating expression is one which is not /// guaranteed to execute exactly once upon entering the parent /// scope. This could be because the expression only executes /// conditionally, such as the expression `b` in `a && b`, or /// because the expression may execute many times, such as a loop /// body. The reason that we distinguish such expressions is that, /// upon exiting the parent scope, we cannot statically know how /// many times the expression executed, and thus if the expression /// creates temporaries we cannot know statically how many such /// temporaries we would have to cleanup. Therefore we ensure that /// the temporaries never outlast the conditional/repeating /// expression, preventing the need for dynamic checks and/or /// arbitrary amounts of stack space. Terminating scopes end /// up being contained in a DestructionScope that contains the /// destructor's execution. terminating_scopes: NodeSet } impl RegionMaps { /// create a bogus code extent for the regions in astencode types. Nobody /// really cares about the contents of these. pub fn bogus_code_extent(&self, e: CodeExtentData) -> CodeExtent { self.intern_code_extent(e, DUMMY_CODE_EXTENT) } pub fn lookup_code_extent(&self, e: CodeExtentData) -> CodeExtent { match self.code_extent_interner.borrow().get(&e) { Some(&d) => d, None => panic!("unknown code extent {:?}", e) } } pub fn node_extent(&self, n: ast::NodeId) -> CodeExtent { self.lookup_code_extent(CodeExtentData::Misc(n)) } // Returns the code extent for an item - the destruction scope. pub fn item_extent(&self, n: ast::NodeId) -> CodeExtent { self.lookup_code_extent(CodeExtentData::DestructionScope(n)) } pub fn opt_destruction_extent(&self, n: ast::NodeId) -> Option { self.code_extent_interner.borrow().get(&CodeExtentData::DestructionScope(n)).cloned() } pub fn intern_code_extent(&self, e: CodeExtentData, parent: CodeExtent) -> CodeExtent { match self.code_extent_interner.borrow_mut().entry(e) { Entry::Occupied(o) => { // this can happen when the bogus code extents from tydecode // have (bogus) NodeId-s that overlap items created during // inlining. // We probably shouldn't be creating bogus code extents // though. let idx = *o.get(); if parent == DUMMY_CODE_EXTENT { info!("CodeExtent({}) = {:?} [parent={}] BOGUS!", idx.0, e, parent.0); } else { assert_eq!(self.scope_map.borrow()[idx.0 as usize], DUMMY_CODE_EXTENT); info!("CodeExtent({}) = {:?} [parent={}] RECLAIMED!", idx.0, e, parent.0); self.scope_map.borrow_mut()[idx.0 as usize] = parent; } idx } Entry::Vacant(v) => { if self.code_extents.borrow().len() > 0xffffffffusize { unreachable!() // should pass a sess, // but this isn't the only place } let idx = CodeExtent(self.code_extents.borrow().len() as u32); info!("CodeExtent({}) = {:?} [parent={}]", idx.0, e, parent.0); self.code_extents.borrow_mut().push(e); self.scope_map.borrow_mut().push(parent); *v.insert(idx) } } } pub fn intern_node(&self, n: ast::NodeId, parent: CodeExtent) -> CodeExtent { self.intern_code_extent(CodeExtentData::Misc(n), parent) } pub fn code_extent_data(&self, e: CodeExtent) -> CodeExtentData { self.code_extents.borrow()[e.0 as usize] } pub fn each_encl_scope(&self, mut e:E) where E: FnMut(&CodeExtent, &CodeExtent) { for child_id in 1..self.code_extents.borrow().len() { let child = CodeExtent(child_id as u32); if let Some(parent) = self.opt_encl_scope(child) { e(&child, &parent) } } } pub fn each_var_scope(&self, mut e:E) where E: FnMut(&ast::NodeId, &CodeExtent) { for (child, parent) in self.var_map.borrow().iter() { e(child, parent) } } pub fn each_rvalue_scope(&self, mut e:E) where E: FnMut(&ast::NodeId, &CodeExtent) { for (child, parent) in self.rvalue_scopes.borrow().iter() { e(child, parent) } } /// Records that `sub_fn` is defined within `sup_fn`. These ids /// should be the id of the block that is the fn body, which is /// also the root of the region hierarchy for that fn. fn record_fn_parent(&self, sub_fn: ast::NodeId, sup_fn: ast::NodeId) { debug!("record_fn_parent(sub_fn={:?}, sup_fn={:?})", sub_fn, sup_fn); assert!(sub_fn != sup_fn); let previous = self.fn_tree.borrow_mut().insert(sub_fn, sup_fn); assert!(previous.is_none()); } fn fn_is_enclosed_by(&self, mut sub_fn: ast::NodeId, sup_fn: ast::NodeId) -> bool { let fn_tree = self.fn_tree.borrow(); loop { if sub_fn == sup_fn { return true; } match fn_tree.get(&sub_fn) { Some(&s) => { sub_fn = s; } None => { return false; } } } } fn record_var_scope(&self, var: ast::NodeId, lifetime: CodeExtent) { debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime); assert!(var != lifetime.node_id(self)); self.var_map.borrow_mut().insert(var, lifetime); } fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: CodeExtent) { debug!("record_rvalue_scope(sub={:?}, sup={:?})", var, lifetime); assert!(var != lifetime.node_id(self)); self.rvalue_scopes.borrow_mut().insert(var, lifetime); } pub fn opt_encl_scope(&self, id: CodeExtent) -> Option { //! Returns the narrowest scope that encloses `id`, if any. self.scope_map.borrow()[id.0 as usize].into_option() } #[allow(dead_code)] // used in middle::cfg pub fn encl_scope(&self, id: CodeExtent) -> CodeExtent { //! Returns the narrowest scope that encloses `id`, if any. self.opt_encl_scope(id).unwrap() } /// Returns the lifetime of the local variable `var_id` pub fn var_scope(&self, var_id: ast::NodeId) -> CodeExtent { match self.var_map.borrow().get(&var_id) { Some(&r) => r, None => { panic!("no enclosing scope for id {:?}", var_id); } } } pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option { //! Returns the scope when temp created by expr_id will be cleaned up // check for a designated rvalue scope match self.rvalue_scopes.borrow().get(&expr_id) { Some(&s) => { debug!("temporary_scope({:?}) = {:?} [custom]", expr_id, s); return Some(s); } None => { } } let scope_map : &[CodeExtent] = &self.scope_map.borrow(); let code_extents: &[CodeExtentData] = &self.code_extents.borrow(); // else, locate the innermost terminating scope // if there's one. Static items, for instance, won't // have an enclosing scope, hence no scope will be // returned. let expr_extent = self.node_extent(expr_id); // For some reason, the expr's scope itself is skipped here. let mut id = match scope_map[expr_extent.0 as usize].into_option() { Some(i) => i, _ => return None }; while let Some(p) = scope_map[id.0 as usize].into_option() { match code_extents[p.0 as usize] { CodeExtentData::DestructionScope(..) => { debug!("temporary_scope({:?}) = {:?} [enclosing]", expr_id, id); return Some(id); } _ => id = p } } debug!("temporary_scope({:?}) = None", expr_id); return None; } pub fn var_region(&self, id: ast::NodeId) -> ty::Region { //! Returns the lifetime of the variable `id`. let scope = ty::ReScope(self.var_scope(id)); debug!("var_region({:?}) = {:?}", id, scope); scope } pub fn scopes_intersect(&self, scope1: CodeExtent, scope2: CodeExtent) -> bool { self.is_subscope_of(scope1, scope2) || self.is_subscope_of(scope2, scope1) } /// Returns true if `subscope` is equal to or is lexically nested inside `superscope` and false /// otherwise. pub fn is_subscope_of(&self, subscope: CodeExtent, superscope: CodeExtent) -> bool { let mut s = subscope; debug!("is_subscope_of({:?}, {:?})", subscope, superscope); while superscope != s { match self.opt_encl_scope(s) { None => { debug!("is_subscope_of({:?}, {:?}, s={:?})=false", subscope, superscope, s); return false; } Some(scope) => s = scope } } debug!("is_subscope_of({:?}, {:?})=true", subscope, superscope); return true; } /// Finds the nearest common ancestor (if any) of two scopes. That is, finds the smallest /// scope which is greater than or equal to both `scope_a` and `scope_b`. pub fn nearest_common_ancestor(&self, scope_a: CodeExtent, scope_b: CodeExtent) -> CodeExtent { if scope_a == scope_b { return scope_a; } let mut a_buf: [CodeExtent; 32] = [ROOT_CODE_EXTENT; 32]; let mut a_vec: Vec = vec![]; let mut b_buf: [CodeExtent; 32] = [ROOT_CODE_EXTENT; 32]; let mut b_vec: Vec = vec![]; let scope_map : &[CodeExtent] = &self.scope_map.borrow(); let a_ancestors = ancestors_of(scope_map, scope_a, &mut a_buf, &mut a_vec); let b_ancestors = ancestors_of(scope_map, scope_b, &mut b_buf, &mut b_vec); let mut a_index = a_ancestors.len() - 1; let mut b_index = b_ancestors.len() - 1; // Here, [ab]_ancestors is a vector going from narrow to broad. // The end of each vector will be the item where the scope is // defined; if there are any common ancestors, then the tails of // the vector will be the same. So basically we want to walk // backwards from the tail of each vector and find the first point // where they diverge. If one vector is a suffix of the other, // then the corresponding scope is a superscope of the other. if a_ancestors[a_index] != b_ancestors[b_index] { // In this case, the two regions belong to completely // different functions. Compare those fn for lexical // nesting. The reasoning behind this is subtle. See the // "Modeling closures" section of the README in // middle::infer::region_inference for more details. let a_root_scope = self.code_extent_data(a_ancestors[a_index]); let b_root_scope = self.code_extent_data(a_ancestors[a_index]); return match (a_root_scope, b_root_scope) { (CodeExtentData::DestructionScope(a_root_id), CodeExtentData::DestructionScope(b_root_id)) => { if self.fn_is_enclosed_by(a_root_id, b_root_id) { // `a` is enclosed by `b`, hence `b` is the ancestor of everything in `a` scope_b } else if self.fn_is_enclosed_by(b_root_id, a_root_id) { // `b` is enclosed by `a`, hence `a` is the ancestor of everything in `b` scope_a } else { // neither fn encloses the other unreachable!() } } _ => { // root ids are always Misc right now unreachable!() } }; } loop { // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index] // for all indices between a_index and the end of the array if a_index == 0 { return scope_a; } if b_index == 0 { return scope_b; } a_index -= 1; b_index -= 1; if a_ancestors[a_index] != b_ancestors[b_index] { return a_ancestors[a_index + 1]; } } fn ancestors_of<'a>(scope_map: &[CodeExtent], scope: CodeExtent, buf: &'a mut [CodeExtent; 32], vec: &'a mut Vec) -> &'a [CodeExtent] { // debug!("ancestors_of(scope={:?})", scope); let mut scope = scope; let mut i = 0; while i < 32 { buf[i] = scope; match scope_map[scope.0 as usize].into_option() { Some(superscope) => scope = superscope, _ => return &buf[..i+1] } i += 1; } *vec = Vec::with_capacity(64); vec.extend_from_slice(buf); loop { vec.push(scope); match scope_map[scope.0 as usize].into_option() { Some(superscope) => scope = superscope, _ => return &*vec } } } } } /// Records the lifetime of a local variable as `cx.var_parent` fn record_var_lifetime(visitor: &mut RegionResolutionVisitor, var_id: ast::NodeId, _sp: Span) { match visitor.cx.var_parent { ROOT_CODE_EXTENT => { // this can happen in extern fn declarations like // // extern fn isalnum(c: c_int) -> c_int } parent_scope => visitor.region_maps.record_var_scope(var_id, parent_scope), } } fn resolve_block(visitor: &mut RegionResolutionVisitor, blk: &hir::Block) { debug!("resolve_block(blk.id={:?})", blk.id); let prev_cx = visitor.cx; let block_extent = visitor.new_node_extent_with_dtor(blk.id); // We treat the tail expression in the block (if any) somewhat // differently from the statements. The issue has to do with // temporary lifetimes. Consider the following: // // quux({ // let inner = ... (&bar()) ...; // // (... (&foo()) ...) // (the tail expression) // }, other_argument()); // // Each of the statements within the block is a terminating // scope, and thus a temporary (e.g. the result of calling // `bar()` in the initalizer expression for `let inner = ...;`) // will be cleaned up immediately after its corresponding // statement (i.e. `let inner = ...;`) executes. // // On the other hand, temporaries associated with evaluating the // tail expression for the block are assigned lifetimes so that // they will be cleaned up as part of the terminating scope // *surrounding* the block expression. Here, the terminating // scope for the block expression is the `quux(..)` call; so // those temporaries will only be cleaned up *after* both // `other_argument()` has run and also the call to `quux(..)` // itself has returned. visitor.cx = Context { root_id: prev_cx.root_id, var_parent: block_extent, parent: block_extent, }; { // This block should be kept approximately in sync with // `intravisit::walk_block`. (We manually walk the block, rather // than call `walk_block`, in order to maintain precise // index information.) for (i, statement) in blk.stmts.iter().enumerate() { if let hir::StmtDecl(..) = statement.node { // Each StmtDecl introduces a subscope for bindings // introduced by the declaration; this subscope covers // a suffix of the block . Each subscope in a block // has the previous subscope in the block as a parent, // except for the first such subscope, which has the // block itself as a parent. let stmt_extent = visitor.new_code_extent( CodeExtentData::Remainder(BlockRemainder { block: blk.id, first_statement_index: i as u32 }) ); visitor.cx = Context { root_id: prev_cx.root_id, var_parent: stmt_extent, parent: stmt_extent, }; } visitor.visit_stmt(statement) } walk_list!(visitor, visit_expr, &blk.expr); } visitor.cx = prev_cx; } fn resolve_arm(visitor: &mut RegionResolutionVisitor, arm: &hir::Arm) { visitor.terminating_scopes.insert(arm.body.id); if let Some(ref expr) = arm.guard { visitor.terminating_scopes.insert(expr.id); } intravisit::walk_arm(visitor, arm); } fn resolve_pat(visitor: &mut RegionResolutionVisitor, pat: &hir::Pat) { visitor.new_node_extent(pat.id); // If this is a binding (or maybe a binding, I'm too lazy to check // the def map) then record the lifetime of that binding. match pat.node { hir::PatIdent(..) => { record_var_lifetime(visitor, pat.id, pat.span); } _ => { } } intravisit::walk_pat(visitor, pat); } fn resolve_stmt(visitor: &mut RegionResolutionVisitor, stmt: &hir::Stmt) { let stmt_id = stmt_id(stmt); debug!("resolve_stmt(stmt.id={:?})", stmt_id); // Every statement will clean up the temporaries created during // execution of that statement. Therefore each statement has an // associated destruction scope that represents the extent of the // statement plus its destructors, and thus the extent for which // regions referenced by the destructors need to survive. visitor.terminating_scopes.insert(stmt_id); let stmt_extent = visitor.new_node_extent_with_dtor(stmt_id); let prev_parent = visitor.cx.parent; visitor.cx.parent = stmt_extent; intravisit::walk_stmt(visitor, stmt); visitor.cx.parent = prev_parent; } fn resolve_expr(visitor: &mut RegionResolutionVisitor, expr: &hir::Expr) { debug!("resolve_expr(expr.id={:?})", expr.id); let expr_extent = visitor.new_node_extent_with_dtor(expr.id); let prev_cx = visitor.cx; visitor.cx.parent = expr_extent; { let terminating_scopes = &mut visitor.terminating_scopes; let mut terminating = |id: ast::NodeId| { terminating_scopes.insert(id); }; match expr.node { // Conditional or repeating scopes are always terminating // scopes, meaning that temporaries cannot outlive them. // This ensures fixed size stacks. hir::ExprBinary(codemap::Spanned { node: hir::BiAnd, .. }, _, ref r) | hir::ExprBinary(codemap::Spanned { node: hir::BiOr, .. }, _, ref r) => { // For shortcircuiting operators, mark the RHS as a terminating // scope since it only executes conditionally. terminating(r.id); } hir::ExprIf(_, ref then, Some(ref otherwise)) => { terminating(then.id); terminating(otherwise.id); } hir::ExprIf(ref expr, ref then, None) => { terminating(expr.id); terminating(then.id); } hir::ExprLoop(ref body, _) => { terminating(body.id); } hir::ExprWhile(ref expr, ref body, _) => { terminating(expr.id); terminating(body.id); } hir::ExprMatch(..) => { visitor.cx.var_parent = expr_extent; } hir::ExprAssignOp(..) | hir::ExprIndex(..) | hir::ExprUnary(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) => { // FIXME(#6268) Nested method calls // // The lifetimes for a call or method call look as follows: // // call.id // - arg0.id // - ... // - argN.id // - call.callee_id // // The idea is that call.callee_id represents *the time when // the invoked function is actually running* and call.id // represents *the time to prepare the arguments and make the // call*. See the section "Borrows in Calls" borrowck/README.md // for an extended explanation of why this distinction is // important. // // record_superlifetime(new_cx, expr.callee_id); } _ => {} } } intravisit::walk_expr(visitor, expr); visitor.cx = prev_cx; } fn resolve_local(visitor: &mut RegionResolutionVisitor, local: &hir::Local) { debug!("resolve_local(local.id={:?},local.init={:?})", local.id,local.init.is_some()); // For convenience in trans, associate with the local-id the var // scope that will be used for any bindings declared in this // pattern. let blk_scope = visitor.cx.var_parent; assert!(blk_scope != ROOT_CODE_EXTENT); // locals must be within a block visitor.region_maps.record_var_scope(local.id, blk_scope); // As an exception to the normal rules governing temporary // lifetimes, initializers in a let have a temporary lifetime // of the enclosing block. This means that e.g. a program // like the following is legal: // // let ref x = HashMap::new(); // // Because the hash map will be freed in the enclosing block. // // We express the rules more formally based on 3 grammars (defined // fully in the helpers below that implement them): // // 1. `E&`, which matches expressions like `&` that // own a pointer into the stack. // // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref // y)` that produce ref bindings into the value they are // matched against or something (at least partially) owned by // the value they are matched against. (By partially owned, // I mean that creating a binding into a ref-counted or managed value // would still count.) // // 3. `ET`, which matches both rvalues like `foo()` as well as lvalues // based on rvalues like `foo().x[2].y`. // // A subexpression `` that appears in a let initializer // `let pat [: ty] = expr` has an extended temporary lifetime if // any of the following conditions are met: // // A. `pat` matches `P&` and `expr` matches `ET` // (covers cases where `pat` creates ref bindings into an rvalue // produced by `expr`) // B. `ty` is a borrowed pointer and `expr` matches `ET` // (covers cases where coercion creates a borrow) // C. `expr` matches `E&` // (covers cases `expr` borrows an rvalue that is then assigned // to memory (at least partially) owned by the binding) // // Here are some examples hopefully giving an intuition where each // rule comes into play and why: // // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` // would have an extended lifetime, but not `foo()`. // // Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]` // would have an extended lifetime, but not `foo()`. // // Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended // lifetime. // // In some cases, multiple rules may apply (though not to the same // rvalue). For example: // // let ref x = [&a(), &b()]; // // Here, the expression `[...]` has an extended lifetime due to rule // A, but the inner rvalues `a()` and `b()` have an extended lifetime // due to rule C. // // FIXME(#6308) -- Note that `[]` patterns work more smoothly post-DST. match local.init { Some(ref expr) => { record_rvalue_scope_if_borrow_expr(visitor, &**expr, blk_scope); let is_borrow = if let Some(ref ty) = local.ty { is_borrowed_ty(&**ty) } else { false }; if is_binding_pat(&*local.pat) || is_borrow { record_rvalue_scope(visitor, &**expr, blk_scope); } } None => { } } intravisit::walk_local(visitor, local); /// True if `pat` match the `P&` nonterminal: /// /// P& = ref X /// | StructName { ..., P&, ... } /// | VariantName(..., P&, ...) /// | [ ..., P&, ... ] /// | ( ..., P&, ... ) /// | box P& fn is_binding_pat(pat: &hir::Pat) -> bool { match pat.node { hir::PatIdent(hir::BindByRef(_), _, _) => true, hir::PatStruct(_, ref field_pats, _) => { field_pats.iter().any(|fp| is_binding_pat(&*fp.node.pat)) } hir::PatVec(ref pats1, ref pats2, ref pats3) => { pats1.iter().any(|p| is_binding_pat(&**p)) || pats2.iter().any(|p| is_binding_pat(&**p)) || pats3.iter().any(|p| is_binding_pat(&**p)) } hir::PatEnum(_, Some(ref subpats)) | hir::PatTup(ref subpats) => { subpats.iter().any(|p| is_binding_pat(&**p)) } hir::PatBox(ref subpat) => { is_binding_pat(&**subpat) } _ => false, } } /// True if `ty` is a borrowed pointer type like `&int` or `&[...]`. fn is_borrowed_ty(ty: &hir::Ty) -> bool { match ty.node { hir::TyRptr(..) => true, _ => false } } /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate: /// /// E& = & ET /// | StructName { ..., f: E&, ... } /// | [ ..., E&, ... ] /// | ( ..., E&, ... ) /// | {...; E&} /// | box E& /// | E& as ... /// | ( E& ) fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor, expr: &hir::Expr, blk_id: CodeExtent) { match expr.node { hir::ExprAddrOf(_, ref subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id); record_rvalue_scope(visitor, &**subexpr, blk_id); } hir::ExprStruct(_, ref fields, _) => { for field in fields { record_rvalue_scope_if_borrow_expr( visitor, &*field.expr, blk_id); } } hir::ExprVec(ref subexprs) | hir::ExprTup(ref subexprs) => { for subexpr in subexprs { record_rvalue_scope_if_borrow_expr( visitor, &**subexpr, blk_id); } } hir::ExprCast(ref subexpr, _) => { record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id) } hir::ExprBlock(ref block) => { match block.expr { Some(ref subexpr) => { record_rvalue_scope_if_borrow_expr( visitor, &**subexpr, blk_id); } None => { } } } _ => { } } } /// Applied to an expression `expr` if `expr` -- or something owned or partially owned by /// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that /// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let` /// statement. /// /// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching /// `` as `blk_id`: /// /// ET = *ET /// | ET[...] /// | ET.f /// | (ET) /// | /// /// Note: ET is intended to match "rvalues or lvalues based on rvalues". fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor, expr: &'a hir::Expr, blk_scope: CodeExtent) { let mut expr = expr; loop { // Note: give all the expressions matching `ET` with the // extended temporary lifetime, not just the innermost rvalue, // because in trans if we must compile e.g. `*rvalue()` // into a temporary, we request the temporary scope of the // outer expression. visitor.region_maps.record_rvalue_scope(expr.id, blk_scope); match expr.node { hir::ExprAddrOf(_, ref subexpr) | hir::ExprUnary(hir::UnDeref, ref subexpr) | hir::ExprField(ref subexpr, _) | hir::ExprTupField(ref subexpr, _) | hir::ExprIndex(ref subexpr, _) => { expr = &**subexpr; } _ => { return; } } } } } fn resolve_item(visitor: &mut RegionResolutionVisitor, item: &hir::Item) { // Items create a new outer block scope as far as we're concerned. let prev_cx = visitor.cx; let prev_ts = mem::replace(&mut visitor.terminating_scopes, NodeSet()); visitor.cx = Context { root_id: None, var_parent: ROOT_CODE_EXTENT, parent: ROOT_CODE_EXTENT }; intravisit::walk_item(visitor, item); visitor.create_item_scope_if_needed(item.id); visitor.cx = prev_cx; visitor.terminating_scopes = prev_ts; } fn resolve_fn(visitor: &mut RegionResolutionVisitor, kind: FnKind, decl: &hir::FnDecl, body: &hir::Block, sp: Span, id: ast::NodeId) { debug!("region::resolve_fn(id={:?}, \ span={:?}, \ body.id={:?}, \ cx.parent={:?})", id, visitor.sess.codemap().span_to_string(sp), body.id, visitor.cx.parent); let fn_decl_scope = visitor.new_code_extent( CodeExtentData::ParameterScope { fn_id: id, body_id: body.id }); if let Some(root_id) = visitor.cx.root_id { visitor.region_maps.record_fn_parent(body.id, root_id); } let outer_cx = visitor.cx; let outer_ts = mem::replace(&mut visitor.terminating_scopes, NodeSet()); visitor.terminating_scopes.insert(body.id); // The arguments and `self` are parented to the fn. visitor.cx = Context { root_id: Some(body.id), parent: ROOT_CODE_EXTENT, var_parent: fn_decl_scope, }; intravisit::walk_fn_decl(visitor, decl); intravisit::walk_fn_kind(visitor, kind); // The body of the every fn is a root scope. visitor.cx = Context { root_id: Some(body.id), parent: fn_decl_scope, var_parent: fn_decl_scope }; visitor.visit_block(body); // Restore context we had at the start. visitor.cx = outer_cx; visitor.terminating_scopes = outer_ts; } impl<'a> RegionResolutionVisitor<'a> { /// Records the current parent (if any) as the parent of `child_scope`. fn new_code_extent(&mut self, child_scope: CodeExtentData) -> CodeExtent { self.region_maps.intern_code_extent(child_scope, self.cx.parent) } fn new_node_extent(&mut self, child_scope: ast::NodeId) -> CodeExtent { self.new_code_extent(CodeExtentData::Misc(child_scope)) } fn new_node_extent_with_dtor(&mut self, id: ast::NodeId) -> CodeExtent { // If node was previously marked as a terminating scope during the // recursive visit of its parent node in the AST, then we need to // account for the destruction scope representing the extent of // the destructors that run immediately after it completes. if self.terminating_scopes.contains(&id) { let ds = self.new_code_extent( CodeExtentData::DestructionScope(id)); self.region_maps.intern_node(id, ds) } else { self.new_node_extent(id) } } fn create_item_scope_if_needed(&mut self, id: ast::NodeId) { // create a region for the destruction scope - this is needed // for constructing parameter environments based on the item. // functions put their destruction scopes *inside* their parameter // scopes. let scope = CodeExtentData::DestructionScope(id); if !self.region_maps.code_extent_interner.borrow().contains_key(&scope) { self.region_maps.intern_code_extent(scope, ROOT_CODE_EXTENT); } } } impl<'a, 'v> Visitor<'v> for RegionResolutionVisitor<'a> { fn visit_block(&mut self, b: &Block) { resolve_block(self, b); } fn visit_item(&mut self, i: &Item) { resolve_item(self, i); } fn visit_impl_item(&mut self, ii: &hir::ImplItem) { intravisit::walk_impl_item(self, ii); self.create_item_scope_if_needed(ii.id); } fn visit_trait_item(&mut self, ti: &hir::TraitItem) { intravisit::walk_trait_item(self, ti); self.create_item_scope_if_needed(ti.id); } fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl, b: &'v Block, s: Span, n: NodeId) { resolve_fn(self, fk, fd, b, s, n); } fn visit_arm(&mut self, a: &Arm) { resolve_arm(self, a); } fn visit_pat(&mut self, p: &Pat) { resolve_pat(self, p); } fn visit_stmt(&mut self, s: &Stmt) { resolve_stmt(self, s); } fn visit_expr(&mut self, ex: &Expr) { resolve_expr(self, ex); } fn visit_local(&mut self, l: &Local) { resolve_local(self, l); } } pub fn resolve_crate(sess: &Session, krate: &hir::Crate) -> RegionMaps { let maps = RegionMaps { code_extents: RefCell::new(vec![]), code_extent_interner: RefCell::new(FnvHashMap()), scope_map: RefCell::new(vec![]), var_map: RefCell::new(NodeMap()), rvalue_scopes: RefCell::new(NodeMap()), fn_tree: RefCell::new(NodeMap()), }; let root_extent = maps.bogus_code_extent( CodeExtentData::DestructionScope(ast::DUMMY_NODE_ID)); assert_eq!(root_extent, ROOT_CODE_EXTENT); let bogus_extent = maps.bogus_code_extent( CodeExtentData::Misc(ast::DUMMY_NODE_ID)); assert_eq!(bogus_extent, DUMMY_CODE_EXTENT); { let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: &maps, cx: Context { root_id: None, parent: ROOT_CODE_EXTENT, var_parent: ROOT_CODE_EXTENT }, terminating_scopes: NodeSet() }; krate.visit_all_items(&mut visitor); } return maps; } pub fn resolve_inlined_item(sess: &Session, region_maps: &RegionMaps, item: &InlinedItem) { let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: region_maps, cx: Context { root_id: None, parent: ROOT_CODE_EXTENT, var_parent: ROOT_CODE_EXTENT }, terminating_scopes: NodeSet() }; item.visit(&mut visitor); }