// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Set and unset common attributes on LLVM values. use libc::{c_uint, c_ulonglong}; use llvm::{self, ValueRef, AttrHelper}; use middle::ty; use middle::infer; use session::config::NoDebugInfo; use syntax::abi; pub use syntax::attr::InlineAttr; use syntax::ast; use rustc_front::hir; use trans::base; use trans::common; use trans::context::CrateContext; use trans::machine; use trans::type_of; /// Mark LLVM function to use provided inline heuristic. #[inline] pub fn inline(val: ValueRef, inline: InlineAttr) { use self::InlineAttr::*; match inline { Hint => llvm::SetFunctionAttribute(val, llvm::Attribute::InlineHint), Always => llvm::SetFunctionAttribute(val, llvm::Attribute::AlwaysInline), Never => llvm::SetFunctionAttribute(val, llvm::Attribute::NoInline), None => { let attr = llvm::Attribute::InlineHint | llvm::Attribute::AlwaysInline | llvm::Attribute::NoInline; unsafe { llvm::LLVMRemoveFunctionAttr(val, attr.bits() as c_ulonglong) } }, }; } /// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function. #[inline] pub fn emit_uwtable(val: ValueRef, emit: bool) { if emit { llvm::SetFunctionAttribute(val, llvm::Attribute::UWTable); } else { unsafe { llvm::LLVMRemoveFunctionAttr( val, llvm::Attribute::UWTable.bits() as c_ulonglong, ); } } } /// Tell LLVM whether the function can or cannot unwind. #[inline] pub fn unwind(val: ValueRef, can_unwind: bool) { if can_unwind { unsafe { llvm::LLVMRemoveFunctionAttr( val, llvm::Attribute::NoUnwind.bits() as c_ulonglong, ); } } else { llvm::SetFunctionAttribute(val, llvm::Attribute::NoUnwind); } } /// Tell LLVM whether it should optimise function for size. #[inline] #[allow(dead_code)] // possibly useful function pub fn set_optimize_for_size(val: ValueRef, optimize: bool) { if optimize { llvm::SetFunctionAttribute(val, llvm::Attribute::OptimizeForSize); } else { unsafe { llvm::LLVMRemoveFunctionAttr( val, llvm::Attribute::OptimizeForSize.bits() as c_ulonglong, ); } } } /// Composite function which sets LLVM attributes for function depending on its AST (#[attribute]) /// attributes. pub fn from_fn_attrs(ccx: &CrateContext, attrs: &[ast::Attribute], llfn: ValueRef) { use syntax::attr::*; inline(llfn, find_inline_attr(Some(ccx.sess().diagnostic()), attrs)); // FIXME: #11906: Omitting frame pointers breaks retrieving the value of a // parameter. let no_fp_elim = (ccx.sess().opts.debuginfo != NoDebugInfo) || !ccx.sess().target.target.options.eliminate_frame_pointer; if no_fp_elim { unsafe { let attr = "no-frame-pointer-elim\0".as_ptr() as *const _; let val = "true\0".as_ptr() as *const _; llvm::LLVMAddFunctionAttrStringValue(llfn, llvm::FunctionIndex as c_uint, attr, val); } } for attr in attrs { if attr.check_name("cold") { unsafe { llvm::LLVMAddFunctionAttribute(llfn, llvm::FunctionIndex as c_uint, llvm::ColdAttribute as u64) } } else if attr.check_name("allocator") { llvm::Attribute::NoAlias.apply_llfn(llvm::ReturnIndex as c_uint, llfn); } else if attr.check_name("unwind") { unwind(llfn, true); } } } /// Composite function which converts function type into LLVM attributes for the function. pub fn from_fn_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_type: ty::Ty<'tcx>) -> llvm::AttrBuilder { use middle::ty::{BrAnon, ReLateBound}; let function_type; let (fn_sig, abi, env_ty) = match fn_type.sty { ty::TyBareFn(_, ref f) => (&f.sig, f.abi, None), ty::TyClosure(closure_did, ref substs) => { let infcx = infer::normalizing_infer_ctxt(ccx.tcx(), &ccx.tcx().tables); function_type = infcx.closure_type(closure_did, substs); let self_type = base::self_type_for_closure(ccx, closure_did, fn_type); (&function_type.sig, abi::RustCall, Some(self_type)) } _ => ccx.sess().bug("expected closure or function.") }; let fn_sig = ccx.tcx().erase_late_bound_regions(fn_sig); let fn_sig = infer::normalize_associated_type(ccx.tcx(), &fn_sig); let mut attrs = llvm::AttrBuilder::new(); let ret_ty = fn_sig.output; // These have an odd calling convention, so we need to manually // unpack the input ty's let input_tys = match fn_type.sty { ty::TyClosure(..) => { assert!(abi == abi::RustCall); match fn_sig.inputs[0].sty { ty::TyTuple(ref inputs) => { let mut full_inputs = vec![env_ty.expect("Missing closure environment")]; full_inputs.extend_from_slice(inputs); full_inputs } _ => ccx.sess().bug("expected tuple'd inputs") } }, ty::TyBareFn(..) if abi == abi::RustCall => { let mut inputs = vec![fn_sig.inputs[0]]; match fn_sig.inputs[1].sty { ty::TyTuple(ref t_in) => { inputs.extend_from_slice(&t_in[..]); inputs } _ => ccx.sess().bug("expected tuple'd inputs") } } _ => fn_sig.inputs.clone() }; // Index 0 is the return value of the llvm func, so we start at 1 let mut idx = 1; if let ty::FnConverging(ret_ty) = ret_ty { // A function pointer is called without the declaration // available, so we have to apply any attributes with ABI // implications directly to the call instruction. Right now, // the only attribute we need to worry about is `sret`. if type_of::return_uses_outptr(ccx, ret_ty) { let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, ret_ty)); // The outptr can be noalias and nocapture because it's entirely // invisible to the program. We also know it's nonnull as well // as how many bytes we can dereference attrs.arg(1, llvm::Attribute::StructRet) .arg(1, llvm::Attribute::NoAlias) .arg(1, llvm::Attribute::NoCapture) .arg(1, llvm::DereferenceableAttribute(llret_sz)); // Add one more since there's an outptr idx += 1; } else { // The `noalias` attribute on the return value is useful to a // function ptr caller. match ret_ty.sty { // `Box` pointer return values never alias because ownership // is transferred ty::TyBox(it) if common::type_is_sized(ccx.tcx(), it) => { attrs.ret(llvm::Attribute::NoAlias); } _ => {} } // We can also mark the return value as `dereferenceable` in certain cases match ret_ty.sty { // These are not really pointers but pairs, (pointer, len) ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) | ty::TyBox(inner) if common::type_is_sized(ccx.tcx(), inner) => { let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner)); attrs.ret(llvm::DereferenceableAttribute(llret_sz)); } _ => {} } if let ty::TyBool = ret_ty.sty { attrs.ret(llvm::Attribute::ZExt); } } } for &t in input_tys.iter() { match t.sty { _ if type_of::arg_is_indirect(ccx, t) => { let llarg_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, t)); // For non-immediate arguments the callee gets its own copy of // the value on the stack, so there are no aliases. It's also // program-invisible so can't possibly capture attrs.arg(idx, llvm::Attribute::NoAlias) .arg(idx, llvm::Attribute::NoCapture) .arg(idx, llvm::DereferenceableAttribute(llarg_sz)); } ty::TyBool => { attrs.arg(idx, llvm::Attribute::ZExt); } // `Box` pointer parameters never alias because ownership is transferred ty::TyBox(inner) => { attrs.arg(idx, llvm::Attribute::NoAlias); if common::type_is_sized(ccx.tcx(), inner) { let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner)); attrs.arg(idx, llvm::DereferenceableAttribute(llsz)); } else { attrs.arg(idx, llvm::NonNullAttribute); if inner.is_trait() { attrs.arg(idx + 1, llvm::NonNullAttribute); } } } ty::TyRef(b, mt) => { // `&mut` pointer parameters never alias other parameters, or mutable global data // // `&T` where `T` contains no `UnsafeCell` is immutable, and can be marked as // both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely // on memory dependencies rather than pointer equality let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe(); if mt.mutbl == hir::MutMutable || !interior_unsafe { attrs.arg(idx, llvm::Attribute::NoAlias); } if mt.mutbl == hir::MutImmutable && !interior_unsafe { attrs.arg(idx, llvm::Attribute::ReadOnly); } // & pointer parameters are also never null and for sized types we also know // exactly how many bytes we can dereference if common::type_is_sized(ccx.tcx(), mt.ty) { let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty)); attrs.arg(idx, llvm::DereferenceableAttribute(llsz)); } else { attrs.arg(idx, llvm::NonNullAttribute); if mt.ty.is_trait() { attrs.arg(idx + 1, llvm::NonNullAttribute); } } // When a reference in an argument has no named lifetime, it's // impossible for that reference to escape this function // (returned or stored beyond the call by a closure). if let ReLateBound(_, BrAnon(_)) = *b { attrs.arg(idx, llvm::Attribute::NoCapture); } } _ => () } if common::type_is_fat_ptr(ccx.tcx(), t) { idx += 2; } else { idx += 1; } } attrs }