// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[allow(missing_doc)]; use json; use json::ToJson; use serialize::{Encoder, Encodable, Decoder, Decodable}; use arc::{Arc,RWArc}; use treemap::TreeMap; use std::cell::Cell; use std::comm::{PortOne, oneshot}; use std::{str, task}; use std::rt::io; use std::rt::io::{File, Decorator}; use std::rt::io::mem::MemWriter; /** * * This is a loose clone of the [fbuild build system](https://github.com/felix-lang/fbuild), * made a touch more generic (not wired to special cases on files) and much * less metaprogram-y due to rust's comparative weakness there, relative to * python. * * It's based around _imperative builds_ that happen to have some function * calls cached. That is, it's _just_ a mechanism for describing cached * functions. This makes it much simpler and smaller than a "build system" * that produces an IR and evaluates it. The evaluation order is normal * function calls. Some of them just return really quickly. * * A cached function consumes and produces a set of _works_. A work has a * name, a kind (that determines how the value is to be checked for * freshness) and a value. Works must also be (de)serializable. Some * examples of works: * * kind name value * ------------------------ * cfg os linux * file foo.c * url foo.com * * Works are conceptually single units, but we store them most of the time * in maps of the form (type,name) => value. These are WorkMaps. * * A cached function divides the works it's interested in into inputs and * outputs, and subdivides those into declared (input) works and * discovered (input and output) works. * * A _declared_ input or is one that is given to the workcache before * any work actually happens, in the "prep" phase. Even when a function's * work-doing part (the "exec" phase) never gets called, it has declared * inputs, which can be checked for freshness (and potentially * used to determine that the function can be skipped). * * The workcache checks _all_ works for freshness, but uses the set of * discovered outputs from the _previous_ exec (which it will re-discover * and re-record each time the exec phase runs). * * Therefore the discovered works cached in the db might be a * mis-approximation of the current discoverable works, but this is ok for * the following reason: we assume that if an artifact A changed from * depending on B,C,D to depending on B,C,D,E, then A itself changed (as * part of the change-in-dependencies), so we will be ok. * * Each function has a single discriminated output work called its _result_. * This is only different from other works in that it is returned, by value, * from a call to the cacheable function; the other output works are used in * passing to invalidate dependencies elsewhere in the cache, but do not * otherwise escape from a function invocation. Most functions only have one * output work anyways. * * A database (the central store of a workcache) stores a mappings: * * (fn_name,{declared_input}) => ({discovered_input}, * {discovered_output},result) * * (Note: fbuild, which workcache is based on, has the concept of a declared * output as separate from a discovered output. This distinction exists only * as an artifact of how fbuild works: via annotations on function types * and metaprogramming, with explicit dependency declaration as a fallback. * Workcache is more explicit about dependencies, and as such treats all * outputs the same, as discovered-during-the-last-run.) * */ #[deriving(Clone, Eq, Encodable, Decodable, TotalOrd, TotalEq)] struct WorkKey { kind: ~str, name: ~str } impl WorkKey { pub fn new(kind: &str, name: &str) -> WorkKey { WorkKey { kind: kind.to_owned(), name: name.to_owned(), } } } // FIXME #8883: The key should be a WorkKey and not a ~str. // This is working around some JSON weirdness. #[deriving(Clone, Eq, Encodable, Decodable)] struct WorkMap(TreeMap<~str, KindMap>); #[deriving(Clone, Eq, Encodable, Decodable)] struct KindMap(TreeMap<~str, ~str>); impl WorkMap { fn new() -> WorkMap { WorkMap(TreeMap::new()) } fn insert_work_key(&mut self, k: WorkKey, val: ~str) { let WorkKey { kind, name } = k; match self.find_mut(&name) { Some(&KindMap(ref mut m)) => { m.insert(kind, val); return; } None => () } let mut new_map = TreeMap::new(); new_map.insert(kind, val); self.insert(name, KindMap(new_map)); } } pub struct Database { priv db_filename: Path, priv db_cache: TreeMap<~str, ~str>, db_dirty: bool } impl Database { pub fn new(p: Path) -> Database { let mut rslt = Database { db_filename: p, db_cache: TreeMap::new(), db_dirty: false }; if rslt.db_filename.exists() { rslt.load(); } rslt } pub fn prepare(&self, fn_name: &str, declared_inputs: &WorkMap) -> Option<(WorkMap, WorkMap, ~str)> { let k = json_encode(&(fn_name, declared_inputs)); match self.db_cache.find(&k) { None => None, Some(v) => Some(json_decode(*v)) } } pub fn cache(&mut self, fn_name: &str, declared_inputs: &WorkMap, discovered_inputs: &WorkMap, discovered_outputs: &WorkMap, result: &str) { let k = json_encode(&(fn_name, declared_inputs)); let v = json_encode(&(discovered_inputs, discovered_outputs, result)); self.db_cache.insert(k,v); self.db_dirty = true } // FIXME #4330: This should have &mut self and should set self.db_dirty to false. fn save(&self) { let f = @mut File::create(&self.db_filename); self.db_cache.to_json().to_pretty_writer(f as @mut io::Writer); } fn load(&mut self) { assert!(!self.db_dirty); assert!(self.db_filename.exists()); match io::result(|| File::open(&self.db_filename)) { Err(e) => fail!("Couldn't load workcache database {}: {}", self.db_filename.display(), e.desc), Ok(r) => match json::from_reader(@mut r.unwrap() as @mut io::Reader) { Err(e) => fail!("Couldn't parse workcache database (from file {}): {}", self.db_filename.display(), e.to_str()), Ok(r) => { let mut decoder = json::Decoder(r); self.db_cache = Decodable::decode(&mut decoder); } } } } } #[unsafe_destructor] impl Drop for Database { fn drop(&mut self) { if self.db_dirty { self.save(); } } } pub struct Logger { // FIXME #4432: Fill in priv a: () } impl Logger { pub fn new() -> Logger { Logger { a: () } } pub fn info(&self, i: &str) { info!("workcache: {}", i); } } pub type FreshnessMap = TreeMap<~str,extern fn(&str,&str)->bool>; #[deriving(Clone)] pub struct Context { db: RWArc, priv logger: RWArc, priv cfg: Arc, /// Map from kinds (source, exe, url, etc.) to a freshness function. /// The freshness function takes a name (e.g. file path) and value /// (e.g. hash of file contents) and determines whether it's up-to-date. /// For example, in the file case, this would read the file off disk, /// hash it, and return the result of comparing the given hash and the /// read hash for equality. priv freshness: Arc } pub struct Prep<'self> { priv ctxt: &'self Context, priv fn_name: &'self str, priv declared_inputs: WorkMap, } pub struct Exec { priv discovered_inputs: WorkMap, priv discovered_outputs: WorkMap } enum Work<'self, T> { WorkValue(T), WorkFromTask(&'self Prep<'self>, PortOne<(Exec, T)>), } fn json_encode>(t: &T) -> ~str { let writer = @mut MemWriter::new(); let mut encoder = json::Encoder(writer as @mut io::Writer); t.encode(&mut encoder); str::from_utf8(writer.inner_ref().as_slice()) } // FIXME(#5121) fn json_decode>(s: &str) -> T { debug!("json decoding: {}", s); let j = json::from_str(s).unwrap(); let mut decoder = json::Decoder(j); Decodable::decode(&mut decoder) } impl Context { pub fn new(db: RWArc, lg: RWArc, cfg: Arc) -> Context { Context::new_with_freshness(db, lg, cfg, Arc::new(TreeMap::new())) } pub fn new_with_freshness(db: RWArc, lg: RWArc, cfg: Arc, freshness: Arc) -> Context { Context { db: db, logger: lg, cfg: cfg, freshness: freshness } } pub fn prep<'a>(&'a self, fn_name: &'a str) -> Prep<'a> { Prep::new(self, fn_name) } pub fn with_prep<'a, T>(&'a self, fn_name: &'a str, blk: &fn(p: &mut Prep) -> T) -> T { let mut p = self.prep(fn_name); blk(&mut p) } } impl Exec { pub fn discover_input(&mut self, dependency_kind: &str, dependency_name: &str, dependency_val: &str) { debug!("Discovering input {} {} {}", dependency_kind, dependency_name, dependency_val); self.discovered_inputs.insert_work_key(WorkKey::new(dependency_kind, dependency_name), dependency_val.to_owned()); } pub fn discover_output(&mut self, dependency_kind: &str, dependency_name: &str, dependency_val: &str) { debug!("Discovering output {} {} {}", dependency_kind, dependency_name, dependency_val); self.discovered_outputs.insert_work_key(WorkKey::new(dependency_kind, dependency_name), dependency_val.to_owned()); } // returns pairs of (kind, name) pub fn lookup_discovered_inputs(&self) -> ~[(~str, ~str)] { let mut rs = ~[]; for (k, v) in self.discovered_inputs.iter() { for (k1, _) in v.iter() { rs.push((k1.clone(), k.clone())); } } rs } } impl<'self> Prep<'self> { fn new(ctxt: &'self Context, fn_name: &'self str) -> Prep<'self> { Prep { ctxt: ctxt, fn_name: fn_name, declared_inputs: WorkMap::new() } } pub fn lookup_declared_inputs(&self) -> ~[~str] { let mut rs = ~[]; for (_, v) in self.declared_inputs.iter() { for (inp, _) in v.iter() { rs.push(inp.clone()); } } rs } } impl<'self> Prep<'self> { pub fn declare_input(&mut self, kind: &str, name: &str, val: &str) { debug!("Declaring input {} {} {}", kind, name, val); self.declared_inputs.insert_work_key(WorkKey::new(kind, name), val.to_owned()); } fn is_fresh(&self, cat: &str, kind: &str, name: &str, val: &str) -> bool { let k = kind.to_owned(); let f = self.ctxt.freshness.get().find(&k); debug!("freshness for: {}/{}/{}/{}", cat, kind, name, val) let fresh = match f { None => fail!("missing freshness-function for '{}'", kind), Some(f) => (*f)(name, val) }; do self.ctxt.logger.write |lg| { if fresh { lg.info(format!("{} {}:{} is fresh", cat, kind, name)); } else { lg.info(format!("{} {}:{} is not fresh", cat, kind, name)) } }; fresh } fn all_fresh(&self, cat: &str, map: &WorkMap) -> bool { for (k_name, kindmap) in map.iter() { for (k_kind, v) in kindmap.iter() { if ! self.is_fresh(cat, *k_kind, *k_name, *v) { return false; } } } return true; } pub fn exec + Decodable>( &'self self, blk: ~fn(&mut Exec) -> T) -> T { self.exec_work(blk).unwrap() } fn exec_work + Decodable>( // FIXME(#5121) &'self self, blk: ~fn(&mut Exec) -> T) -> Work<'self, T> { let mut bo = Some(blk); debug!("exec_work: looking up {} and {:?}", self.fn_name, self.declared_inputs); let cached = do self.ctxt.db.read |db| { db.prepare(self.fn_name, &self.declared_inputs) }; match cached { Some((ref disc_in, ref disc_out, ref res)) if self.all_fresh("declared input",&self.declared_inputs) && self.all_fresh("discovered input", disc_in) && self.all_fresh("discovered output", disc_out) => { debug!("Cache hit!"); debug!("Trying to decode: {:?} / {:?} / {}", disc_in, disc_out, *res); Work::from_value(json_decode(*res)) } _ => { debug!("Cache miss!"); let (port, chan) = oneshot(); let blk = bo.take_unwrap(); let chan = Cell::new(chan); // What happens if the task fails? do task::spawn { let mut exe = Exec { discovered_inputs: WorkMap::new(), discovered_outputs: WorkMap::new(), }; let chan = chan.take(); let v = blk(&mut exe); chan.send((exe, v)); } Work::from_task(self, port) } } } } impl<'self, T:Send + Encodable + Decodable> Work<'self, T> { // FIXME(#5121) pub fn from_value(elt: T) -> Work<'self, T> { WorkValue(elt) } pub fn from_task(prep: &'self Prep<'self>, port: PortOne<(Exec, T)>) -> Work<'self, T> { WorkFromTask(prep, port) } pub fn unwrap(self) -> T { match self { WorkValue(v) => v, WorkFromTask(prep, port) => { let (exe, v) = port.recv(); let s = json_encode(&v); do prep.ctxt.db.write |db| { db.cache(prep.fn_name, &prep.declared_inputs, &exe.discovered_inputs, &exe.discovered_outputs, s); } v } } } } #[test] fn test() { use std::{os, run}; use std::rt::io::fs; use std::str::from_utf8_owned; // Create a path to a new file 'filename' in the directory in which // this test is running. fn make_path(filename: ~str) -> Path { let pth = os::self_exe_path().expect("workcache::test failed").with_filename(filename); if pth.exists() { fs::unlink(&pth); } return pth; } let pth = make_path(~"foo.c"); File::create(&pth).write(bytes!("int main() { return 0; }")); let db_path = make_path(~"db.json"); let cx = Context::new(RWArc::new(Database::new(db_path)), RWArc::new(Logger::new()), Arc::new(TreeMap::new())); let s = do cx.with_prep("test1") |prep| { let subcx = cx.clone(); let pth = pth.clone(); let file_content = from_utf8_owned(File::open(&pth).read_to_end()); // FIXME (#9639): This needs to handle non-utf8 paths prep.declare_input("file", pth.as_str().unwrap(), file_content); do prep.exec |_exe| { let out = make_path(~"foo.o"); // FIXME (#9639): This needs to handle non-utf8 paths run::process_status("gcc", [pth.as_str().unwrap().to_owned(), ~"-o", out.as_str().unwrap().to_owned()]); let _proof_of_concept = subcx.prep("subfn"); // Could run sub-rules inside here. // FIXME (#9639): This needs to handle non-utf8 paths out.as_str().unwrap().to_owned() } }; println(s); }