//! The `HirDisplay` trait, which serves two purposes: Turning various bits from //! HIR back into source code, and just displaying them for debugging/testing //! purposes. use std::{ fmt::{self, Debug}, mem::size_of, }; use base_db::CrateId; use chalk_ir::{BoundVar, Safety, TyKind}; use hir_def::{ data::adt::VariantData, db::DefDatabase, find_path, generics::{TypeOrConstParamData, TypeParamProvenance}, item_scope::ItemInNs, lang_item::{LangItem, LangItemTarget}, nameres::DefMap, path::{Path, PathKind}, type_ref::{TraitBoundModifier, TypeBound, TypeRef}, visibility::Visibility, HasModule, ItemContainerId, LocalFieldId, Lookup, ModuleDefId, ModuleId, TraitId, }; use hir_expand::name::Name; use intern::{Internable, Interned}; use itertools::Itertools; use la_arena::ArenaMap; use smallvec::SmallVec; use stdx::never; use triomphe::Arc; use crate::{ consteval::try_const_usize, db::HirDatabase, from_assoc_type_id, from_foreign_def_id, from_placeholder_idx, layout::Layout, lt_from_placeholder_idx, mapping::from_chalk, mir::pad16, primitive, to_assoc_type_id, utils::{self, detect_variant_from_bytes, generics, ClosureSubst}, AdtId, AliasEq, AliasTy, Binders, CallableDefId, CallableSig, Const, ConstScalar, ConstValue, DomainGoal, FnAbi, GenericArg, ImplTraitId, Interner, Lifetime, LifetimeData, LifetimeOutlives, MemoryMap, Mutability, OpaqueTy, ProjectionTy, ProjectionTyExt, QuantifiedWhereClause, Scalar, Substitution, TraitEnvironment, TraitRef, TraitRefExt, Ty, TyExt, WhereClause, }; pub trait HirWrite: fmt::Write { fn start_location_link(&mut self, _location: ModuleDefId) {} fn end_location_link(&mut self) {} } // String will ignore link metadata impl HirWrite for String {} // `core::Formatter` will ignore metadata impl HirWrite for fmt::Formatter<'_> {} pub struct HirFormatter<'a> { pub db: &'a dyn HirDatabase, fmt: &'a mut dyn HirWrite, buf: String, curr_size: usize, pub(crate) max_size: Option, omit_verbose_types: bool, closure_style: ClosureStyle, display_target: DisplayTarget, } impl HirFormatter<'_> { fn start_location_link(&mut self, location: ModuleDefId) { self.fmt.start_location_link(location); } fn end_location_link(&mut self) { self.fmt.end_location_link(); } } pub trait HirDisplay { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError>; /// Returns a `Display`able type that is human-readable. fn into_displayable<'a>( &'a self, db: &'a dyn HirDatabase, max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, closure_style: ClosureStyle, ) -> HirDisplayWrapper<'a, Self> where Self: Sized, { assert!( !matches!(display_target, DisplayTarget::SourceCode { .. }), "HirDisplayWrapper cannot fail with DisplaySourceCodeError, use HirDisplay::hir_fmt directly instead" ); HirDisplayWrapper { db, t: self, max_size, omit_verbose_types, display_target, closure_style, } } /// Returns a `Display`able type that is human-readable. /// Use this for showing types to the user (e.g. diagnostics) fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size: None, omit_verbose_types: false, closure_style: ClosureStyle::ImplFn, display_target: DisplayTarget::Diagnostics, } } /// Returns a `Display`able type that is human-readable and tries to be succinct. /// Use this for showing types to the user where space is constrained (e.g. doc popups) fn display_truncated<'a>( &'a self, db: &'a dyn HirDatabase, max_size: Option, ) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size, omit_verbose_types: true, closure_style: ClosureStyle::ImplFn, display_target: DisplayTarget::Diagnostics, } } /// Returns a String representation of `self` that can be inserted into the given module. /// Use this when generating code (e.g. assists) fn display_source_code<'a>( &'a self, db: &'a dyn HirDatabase, module_id: ModuleId, allow_opaque: bool, ) -> Result { let mut result = String::new(); match self.hir_fmt(&mut HirFormatter { db, fmt: &mut result, buf: String::with_capacity(20), curr_size: 0, max_size: None, omit_verbose_types: false, closure_style: ClosureStyle::ImplFn, display_target: DisplayTarget::SourceCode { module_id, allow_opaque }, }) { Ok(()) => {} Err(HirDisplayError::FmtError) => panic!("Writing to String can't fail!"), Err(HirDisplayError::DisplaySourceCodeError(e)) => return Err(e), }; Ok(result) } /// Returns a String representation of `self` for test purposes fn display_test<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size: None, omit_verbose_types: false, closure_style: ClosureStyle::ImplFn, display_target: DisplayTarget::Test, } } } impl HirFormatter<'_> { pub fn write_joined( &mut self, iter: impl IntoIterator, sep: &str, ) -> Result<(), HirDisplayError> { let mut first = true; for e in iter { if !first { write!(self, "{sep}")?; } first = false; // Abbreviate multiple omitted types with a single ellipsis. if self.should_truncate() { return write!(self, "{TYPE_HINT_TRUNCATION}"); } e.hir_fmt(self)?; } Ok(()) } /// This allows using the `write!` macro directly with a `HirFormatter`. pub fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<(), HirDisplayError> { // We write to a buffer first to track output size self.buf.clear(); fmt::write(&mut self.buf, args)?; self.curr_size += self.buf.len(); // Then we write to the internal formatter from the buffer self.fmt.write_str(&self.buf).map_err(HirDisplayError::from) } pub fn write_str(&mut self, s: &str) -> Result<(), HirDisplayError> { self.fmt.write_str(s)?; Ok(()) } pub fn write_char(&mut self, c: char) -> Result<(), HirDisplayError> { self.fmt.write_char(c)?; Ok(()) } pub fn should_truncate(&self) -> bool { match self.max_size { Some(max_size) => self.curr_size >= max_size, None => false, } } pub fn omit_verbose_types(&self) -> bool { self.omit_verbose_types } } #[derive(Clone, Copy)] pub enum DisplayTarget { /// Display types for inlays, doc popups, autocompletion, etc... /// Showing `{unknown}` or not qualifying paths is fine here. /// There's no reason for this to fail. Diagnostics, /// Display types for inserting them in source files. /// The generated code should compile, so paths need to be qualified. SourceCode { module_id: ModuleId, allow_opaque: bool }, /// Only for test purpose to keep real types Test, } impl DisplayTarget { fn is_source_code(self) -> bool { matches!(self, Self::SourceCode { .. }) } fn is_test(self) -> bool { matches!(self, Self::Test) } fn allows_opaque(self) -> bool { match self { Self::SourceCode { allow_opaque, .. } => allow_opaque, _ => true, } } } #[derive(Debug)] pub enum DisplaySourceCodeError { PathNotFound, UnknownType, Coroutine, OpaqueType, } pub enum HirDisplayError { /// Errors that can occur when generating source code DisplaySourceCodeError(DisplaySourceCodeError), /// `FmtError` is required to be compatible with std::fmt::Display FmtError, } impl From for HirDisplayError { fn from(_: fmt::Error) -> Self { Self::FmtError } } pub struct HirDisplayWrapper<'a, T> { db: &'a dyn HirDatabase, t: &'a T, max_size: Option, omit_verbose_types: bool, closure_style: ClosureStyle, display_target: DisplayTarget, } #[derive(Debug, PartialEq, Eq, Clone, Copy)] pub enum ClosureStyle { /// `impl FnX(i32, i32) -> i32`, where `FnX` is the most special trait between `Fn`, `FnMut`, `FnOnce` that the /// closure implements. This is the default. ImplFn, /// `|i32, i32| -> i32` RANotation, /// `{closure#14825}`, useful for some diagnostics (like type mismatch) and internal usage. ClosureWithId, /// `{closure#14825}`, useful for internal usage. ClosureWithSubst, /// `…`, which is the `TYPE_HINT_TRUNCATION` Hide, } impl HirDisplayWrapper<'_, T> { pub fn write_to(&self, f: &mut F) -> Result<(), HirDisplayError> { self.t.hir_fmt(&mut HirFormatter { db: self.db, fmt: f, buf: String::with_capacity(20), curr_size: 0, max_size: self.max_size, omit_verbose_types: self.omit_verbose_types, display_target: self.display_target, closure_style: self.closure_style, }) } pub fn with_closure_style(mut self, c: ClosureStyle) -> Self { self.closure_style = c; self } } impl fmt::Display for HirDisplayWrapper<'_, T> where T: HirDisplay, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.write_to(f) { Ok(()) => Ok(()), Err(HirDisplayError::FmtError) => Err(fmt::Error), Err(HirDisplayError::DisplaySourceCodeError(_)) => { // This should never happen panic!("HirDisplay::hir_fmt failed with DisplaySourceCodeError when calling Display::fmt!") } } } } const TYPE_HINT_TRUNCATION: &str = "…"; impl HirDisplay for &T { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for Interned { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { HirDisplay::hir_fmt(self.as_ref(), f) } } impl HirDisplay for ProjectionTy { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{TYPE_HINT_TRUNCATION}"); } let trait_ref = self.trait_ref(f.db); write!(f, "<")?; fmt_trait_ref(f, &trait_ref, true)?; write!( f, ">::{}", f.db.type_alias_data(from_assoc_type_id(self.associated_ty_id)) .name .display(f.db.upcast()) )?; let proj_params_count = self.substitution.len(Interner) - trait_ref.substitution.len(Interner); let proj_params = &self.substitution.as_slice(Interner)[..proj_params_count]; if !proj_params.is_empty() { write!(f, "<")?; f.write_joined(proj_params, ", ")?; write!(f, ">")?; } Ok(()) } } impl HirDisplay for OpaqueTy { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{TYPE_HINT_TRUNCATION}"); } self.substitution.at(Interner, 0).hir_fmt(f) } } impl HirDisplay for GenericArg { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self.interned() { crate::GenericArgData::Ty(ty) => ty.hir_fmt(f), crate::GenericArgData::Lifetime(lt) => lt.hir_fmt(f), crate::GenericArgData::Const(c) => c.hir_fmt(f), } } } impl HirDisplay for Const { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { let data = self.interned(); match &data.value { ConstValue::BoundVar(idx) => idx.hir_fmt(f), ConstValue::InferenceVar(..) => write!(f, "#c#"), ConstValue::Placeholder(idx) => { let id = from_placeholder_idx(f.db, *idx); let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.type_or_consts[id.local_id]; write!(f, "{}", param_data.name().unwrap().display(f.db.upcast()))?; Ok(()) } ConstValue::Concrete(c) => match &c.interned { ConstScalar::Bytes(b, m) => render_const_scalar(f, b, m, &data.ty), ConstScalar::UnevaluatedConst(c, parameters) => { write!(f, "{}", c.name(f.db.upcast()))?; hir_fmt_generics(f, parameters, c.generic_def(f.db.upcast()))?; Ok(()) } ConstScalar::Unknown => f.write_char('_'), }, } } } fn render_const_scalar( f: &mut HirFormatter<'_>, b: &[u8], memory_map: &MemoryMap, ty: &Ty, ) -> Result<(), HirDisplayError> { // FIXME: We need to get krate from the final callers of the hir display // infrastructure and have it here as a field on `f`. let trait_env = TraitEnvironment::empty(*f.db.crate_graph().crates_in_topological_order().last().unwrap()); match ty.kind(Interner) { TyKind::Scalar(s) => match s { Scalar::Bool => write!(f, "{}", b[0] != 0), Scalar::Char => { let it = u128::from_le_bytes(pad16(b, false)) as u32; let Ok(c) = char::try_from(it) else { return f.write_str(""); }; write!(f, "{c:?}") } Scalar::Int(_) => { let it = i128::from_le_bytes(pad16(b, true)); write!(f, "{it}") } Scalar::Uint(_) => { let it = u128::from_le_bytes(pad16(b, false)); write!(f, "{it}") } Scalar::Float(fl) => match fl { chalk_ir::FloatTy::F32 => { let it = f32::from_le_bytes(b.try_into().unwrap()); write!(f, "{it:?}") } chalk_ir::FloatTy::F64 => { let it = f64::from_le_bytes(b.try_into().unwrap()); write!(f, "{it:?}") } }, }, TyKind::Ref(_, _, t) => match t.kind(Interner) { TyKind::Str => { let addr = usize::from_le_bytes(b[0..b.len() / 2].try_into().unwrap()); let size = usize::from_le_bytes(b[b.len() / 2..].try_into().unwrap()); let Some(bytes) = memory_map.get(addr, size) else { return f.write_str(""); }; let s = std::str::from_utf8(bytes).unwrap_or(""); write!(f, "{s:?}") } TyKind::Slice(ty) => { let addr = usize::from_le_bytes(b[0..b.len() / 2].try_into().unwrap()); let count = usize::from_le_bytes(b[b.len() / 2..].try_into().unwrap()); let Ok(layout) = f.db.layout_of_ty(ty.clone(), trait_env) else { return f.write_str(""); }; let size_one = layout.size.bytes_usize(); let Some(bytes) = memory_map.get(addr, size_one * count) else { return f.write_str(""); }; f.write_str("&[")?; let mut first = true; for i in 0..count { if first { first = false; } else { f.write_str(", ")?; } let offset = size_one * i; render_const_scalar(f, &bytes[offset..offset + size_one], memory_map, ty)?; } f.write_str("]") } TyKind::Dyn(_) => { let addr = usize::from_le_bytes(b[0..b.len() / 2].try_into().unwrap()); let ty_id = usize::from_le_bytes(b[b.len() / 2..].try_into().unwrap()); let Ok(t) = memory_map.vtable_ty(ty_id) else { return f.write_str(""); }; let Ok(layout) = f.db.layout_of_ty(t.clone(), trait_env) else { return f.write_str(""); }; let size = layout.size.bytes_usize(); let Some(bytes) = memory_map.get(addr, size) else { return f.write_str(""); }; f.write_str("&")?; render_const_scalar(f, bytes, memory_map, t) } TyKind::Adt(adt, _) if b.len() == 2 * size_of::() => match adt.0 { hir_def::AdtId::StructId(s) => { let data = f.db.struct_data(s); write!(f, "&{}", data.name.display(f.db.upcast()))?; Ok(()) } _ => f.write_str(""), }, _ => { let addr = usize::from_le_bytes(match b.try_into() { Ok(b) => b, Err(_) => { never!( "tried rendering ty {:?} in const ref with incorrect byte count {}", t, b.len() ); return f.write_str(""); } }); let Ok(layout) = f.db.layout_of_ty(t.clone(), trait_env) else { return f.write_str(""); }; let size = layout.size.bytes_usize(); let Some(bytes) = memory_map.get(addr, size) else { return f.write_str(""); }; f.write_str("&")?; render_const_scalar(f, bytes, memory_map, t) } }, TyKind::Tuple(_, subst) => { let Ok(layout) = f.db.layout_of_ty(ty.clone(), trait_env.clone()) else { return f.write_str(""); }; f.write_str("(")?; let mut first = true; for (id, ty) in subst.iter(Interner).enumerate() { if first { first = false; } else { f.write_str(", ")?; } let ty = ty.assert_ty_ref(Interner); // Tuple only has type argument let offset = layout.fields.offset(id).bytes_usize(); let Ok(layout) = f.db.layout_of_ty(ty.clone(), trait_env.clone()) else { f.write_str("")?; continue; }; let size = layout.size.bytes_usize(); render_const_scalar(f, &b[offset..offset + size], memory_map, ty)?; } f.write_str(")") } TyKind::Adt(adt, subst) => { let Ok(layout) = f.db.layout_of_adt(adt.0, subst.clone(), trait_env.clone()) else { return f.write_str(""); }; match adt.0 { hir_def::AdtId::StructId(s) => { let data = f.db.struct_data(s); write!(f, "{}", data.name.display(f.db.upcast()))?; let field_types = f.db.field_types(s.into()); render_variant_after_name( &data.variant_data, f, &field_types, f.db.trait_environment(adt.0.into()), &layout, subst, b, memory_map, ) } hir_def::AdtId::UnionId(u) => { write!(f, "{}", f.db.union_data(u).name.display(f.db.upcast())) } hir_def::AdtId::EnumId(e) => { let Some((var_id, var_layout)) = detect_variant_from_bytes(&layout, f.db, trait_env, b, e) else { return f.write_str(""); }; let data = f.db.enum_variant_data(var_id); write!(f, "{}", data.name.display(f.db.upcast()))?; let field_types = f.db.field_types(var_id.into()); render_variant_after_name( &data.variant_data, f, &field_types, f.db.trait_environment(adt.0.into()), var_layout, subst, b, memory_map, ) } } } TyKind::FnDef(..) => ty.hir_fmt(f), TyKind::Function(_) | TyKind::Raw(_, _) => { let it = u128::from_le_bytes(pad16(b, false)); write!(f, "{:#X} as ", it)?; ty.hir_fmt(f) } TyKind::Array(ty, len) => { let Some(len) = try_const_usize(f.db, len) else { return f.write_str(""); }; let Ok(layout) = f.db.layout_of_ty(ty.clone(), trait_env) else { return f.write_str(""); }; let size_one = layout.size.bytes_usize(); f.write_str("[")?; let mut first = true; for i in 0..len as usize { if first { first = false; } else { f.write_str(", ")?; } let offset = size_one * i; render_const_scalar(f, &b[offset..offset + size_one], memory_map, ty)?; } f.write_str("]") } TyKind::Never => f.write_str("!"), TyKind::Closure(_, _) => f.write_str(""), TyKind::Coroutine(_, _) => f.write_str(""), TyKind::CoroutineWitness(_, _) => f.write_str(""), // The below arms are unreachable, since const eval will bail out before here. TyKind::Foreign(_) => f.write_str(""), TyKind::Error | TyKind::Placeholder(_) | TyKind::Alias(_) | TyKind::AssociatedType(_, _) | TyKind::OpaqueType(_, _) | TyKind::BoundVar(_) | TyKind::InferenceVar(_, _) => f.write_str(""), // The below arms are unreachable, since we handled them in ref case. TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => f.write_str(""), } } fn render_variant_after_name( data: &VariantData, f: &mut HirFormatter<'_>, field_types: &ArenaMap>, trait_env: Arc, layout: &Layout, subst: &Substitution, b: &[u8], memory_map: &MemoryMap, ) -> Result<(), HirDisplayError> { match data { VariantData::Record(fields) | VariantData::Tuple(fields) => { let render_field = |f: &mut HirFormatter<'_>, id: LocalFieldId| { let offset = layout.fields.offset(u32::from(id.into_raw()) as usize).bytes_usize(); let ty = field_types[id].clone().substitute(Interner, subst); let Ok(layout) = f.db.layout_of_ty(ty.clone(), trait_env.clone()) else { return f.write_str(""); }; let size = layout.size.bytes_usize(); render_const_scalar(f, &b[offset..offset + size], memory_map, &ty) }; let mut it = fields.iter(); if matches!(data, VariantData::Record(_)) { write!(f, " {{")?; if let Some((id, data)) = it.next() { write!(f, " {}: ", data.name.display(f.db.upcast()))?; render_field(f, id)?; } for (id, data) in it { write!(f, ", {}: ", data.name.display(f.db.upcast()))?; render_field(f, id)?; } write!(f, " }}")?; } else { let mut it = it.map(|it| it.0); write!(f, "(")?; if let Some(id) = it.next() { render_field(f, id)?; } for id in it { write!(f, ", ")?; render_field(f, id)?; } write!(f, ")")?; } Ok(()) } VariantData::Unit => Ok(()), } } impl HirDisplay for BoundVar { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write!(f, "?{}.{}", self.debruijn.depth(), self.index) } } impl HirDisplay for Ty { fn hir_fmt( &self, f @ &mut HirFormatter { db, .. }: &mut HirFormatter<'_>, ) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{TYPE_HINT_TRUNCATION}"); } match self.kind(Interner) { TyKind::Never => write!(f, "!")?, TyKind::Str => write!(f, "str")?, TyKind::Scalar(Scalar::Bool) => write!(f, "bool")?, TyKind::Scalar(Scalar::Char) => write!(f, "char")?, &TyKind::Scalar(Scalar::Float(t)) => write!(f, "{}", primitive::float_ty_to_string(t))?, &TyKind::Scalar(Scalar::Int(t)) => write!(f, "{}", primitive::int_ty_to_string(t))?, &TyKind::Scalar(Scalar::Uint(t)) => write!(f, "{}", primitive::uint_ty_to_string(t))?, TyKind::Slice(t) => { write!(f, "[")?; t.hir_fmt(f)?; write!(f, "]")?; } TyKind::Array(t, c) => { write!(f, "[")?; t.hir_fmt(f)?; write!(f, "; ")?; c.hir_fmt(f)?; write!(f, "]")?; } TyKind::Raw(m, t) | TyKind::Ref(m, _, t) => { if matches!(self.kind(Interner), TyKind::Raw(..)) { write!( f, "*{}", match m { Mutability::Not => "const ", Mutability::Mut => "mut ", } )?; } else { write!( f, "&{}", match m { Mutability::Not => "", Mutability::Mut => "mut ", } )?; } // FIXME: all this just to decide whether to use parentheses... let contains_impl_fn = |bounds: &[QuantifiedWhereClause]| { bounds.iter().any(|bound| { if let WhereClause::Implemented(trait_ref) = bound.skip_binders() { let trait_ = trait_ref.hir_trait_id(); fn_traits(db.upcast(), trait_).any(|it| it == trait_) } else { false } }) }; let (preds_to_print, has_impl_fn_pred) = match t.kind(Interner) { TyKind::Dyn(dyn_ty) if dyn_ty.bounds.skip_binders().interned().len() > 1 => { let bounds = dyn_ty.bounds.skip_binders().interned(); (bounds.len(), contains_impl_fn(bounds)) } TyKind::Alias(AliasTy::Opaque(OpaqueTy { opaque_ty_id, substitution: parameters, })) | TyKind::OpaqueType(opaque_ty_id, parameters) => { let impl_trait_id = db.lookup_intern_impl_trait_id((*opaque_ty_id).into()); if let ImplTraitId::ReturnTypeImplTrait(func, idx) = impl_trait_id { let datas = db .return_type_impl_traits(func) .expect("impl trait id without data"); let data = (*datas).as_ref().map(|rpit| rpit.impl_traits[idx].bounds.clone()); let bounds = data.substitute(Interner, parameters); let mut len = bounds.skip_binders().len(); // Don't count Sized but count when it absent // (i.e. when explicit ?Sized bound is set). let default_sized = SizedByDefault::Sized { anchor: func.lookup(db.upcast()).module(db.upcast()).krate(), }; let sized_bounds = bounds .skip_binders() .iter() .filter(|b| { matches!( b.skip_binders(), WhereClause::Implemented(trait_ref) if default_sized.is_sized_trait( trait_ref.hir_trait_id(), db.upcast(), ), ) }) .count(); match sized_bounds { 0 => len += 1, _ => { len = len.saturating_sub(sized_bounds); } } (len, contains_impl_fn(bounds.skip_binders())) } else { (0, false) } } _ => (0, false), }; if has_impl_fn_pred && preds_to_print <= 2 { return t.hir_fmt(f); } if preds_to_print > 1 { write!(f, "(")?; t.hir_fmt(f)?; write!(f, ")")?; } else { t.hir_fmt(f)?; } } TyKind::Tuple(_, substs) => { if substs.len(Interner) == 1 { write!(f, "(")?; substs.at(Interner, 0).hir_fmt(f)?; write!(f, ",)")?; } else { write!(f, "(")?; f.write_joined(substs.as_slice(Interner), ", ")?; write!(f, ")")?; } } TyKind::Function(fn_ptr) => { let sig = CallableSig::from_fn_ptr(fn_ptr); sig.hir_fmt(f)?; } TyKind::FnDef(def, parameters) => { let def = from_chalk(db, *def); let sig = db.callable_item_signature(def).substitute(Interner, parameters); if f.display_target.is_source_code() { // `FnDef` is anonymous and there's no surface syntax for it. Show it as a // function pointer type. return sig.hir_fmt(f); } if let Safety::Unsafe = sig.safety { write!(f, "unsafe ")?; } if !matches!(sig.abi, FnAbi::Rust) { f.write_str("extern \"")?; f.write_str(sig.abi.as_str())?; f.write_str("\" ")?; } match def { CallableDefId::FunctionId(ff) => { write!(f, "fn ")?; f.start_location_link(def.into()); write!(f, "{}", db.function_data(ff).name.display(f.db.upcast()))? } CallableDefId::StructId(s) => { f.start_location_link(def.into()); write!(f, "{}", db.struct_data(s).name.display(f.db.upcast()))? } CallableDefId::EnumVariantId(e) => { f.start_location_link(def.into()); write!(f, "{}", db.enum_variant_data(e).name.display(f.db.upcast()))? } }; f.end_location_link(); if parameters.len(Interner) > 0 { let generics = generics(db.upcast(), def.into()); let (parent_params, self_param, type_params, const_params, _impl_trait_params) = generics.provenance_split(); let total_len = parent_params + self_param + type_params + const_params; // We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self? if total_len > 0 { // `parameters` are in the order of fn's params (including impl traits), // parent's params (those from enclosing impl or trait, if any). let parameters = parameters.as_slice(Interner); let fn_params_len = self_param + type_params + const_params; let fn_params = parameters.get(..fn_params_len); let parent_params = parameters.get(parameters.len() - parent_params..); let params = parent_params.into_iter().chain(fn_params).flatten(); write!(f, "<")?; f.write_joined(params, ", ")?; write!(f, ">")?; } } write!(f, "(")?; f.write_joined(sig.params(), ", ")?; write!(f, ")")?; let ret = sig.ret(); if !ret.is_unit() { write!(f, " -> ")?; ret.hir_fmt(f)?; } } TyKind::Adt(AdtId(def_id), parameters) => { f.start_location_link((*def_id).into()); match f.display_target { DisplayTarget::Diagnostics | DisplayTarget::Test => { let name = match *def_id { hir_def::AdtId::StructId(it) => db.struct_data(it).name.clone(), hir_def::AdtId::UnionId(it) => db.union_data(it).name.clone(), hir_def::AdtId::EnumId(it) => db.enum_data(it).name.clone(), }; write!(f, "{}", name.display(f.db.upcast()))?; } DisplayTarget::SourceCode { module_id, allow_opaque: _ } => { if let Some(path) = find_path::find_path( db.upcast(), ItemInNs::Types((*def_id).into()), module_id, false, true, ) { write!(f, "{}", path.display(f.db.upcast()))?; } else { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::PathNotFound, )); } } } f.end_location_link(); let generic_def = self.as_generic_def(db); hir_fmt_generics(f, parameters, generic_def)?; } TyKind::AssociatedType(assoc_type_id, parameters) => { let type_alias = from_assoc_type_id(*assoc_type_id); let trait_ = match type_alias.lookup(db.upcast()).container { ItemContainerId::TraitId(it) => it, _ => panic!("not an associated type"), }; let trait_data = db.trait_data(trait_); let type_alias_data = db.type_alias_data(type_alias); // Use placeholder associated types when the target is test (https://rust-lang.github.io/chalk/book/clauses/type_equality.html#placeholder-associated-types) if f.display_target.is_test() { f.start_location_link(trait_.into()); write!(f, "{}", trait_data.name.display(f.db.upcast()))?; f.end_location_link(); write!(f, "::")?; f.start_location_link(type_alias.into()); write!(f, "{}", type_alias_data.name.display(f.db.upcast()))?; f.end_location_link(); // Note that the generic args for the associated type come before those for the // trait (including the self type). // FIXME: reconsider the generic args order upon formatting? if parameters.len(Interner) > 0 { write!(f, "<")?; f.write_joined(parameters.as_slice(Interner), ", ")?; write!(f, ">")?; } } else { let projection_ty = ProjectionTy { associated_ty_id: to_assoc_type_id(type_alias), substitution: parameters.clone(), }; projection_ty.hir_fmt(f)?; } } TyKind::Foreign(type_alias) => { let alias = from_foreign_def_id(*type_alias); let type_alias = db.type_alias_data(alias); f.start_location_link(alias.into()); write!(f, "{}", type_alias.name.display(f.db.upcast()))?; f.end_location_link(); } TyKind::OpaqueType(opaque_ty_id, parameters) => { if !f.display_target.allows_opaque() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::OpaqueType, )); } let impl_trait_id = db.lookup_intern_impl_trait_id((*opaque_ty_id).into()); match impl_trait_id { ImplTraitId::ReturnTypeImplTrait(func, idx) => { let datas = db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas).as_ref().map(|rpit| rpit.impl_traits[idx].bounds.clone()); let bounds = data.substitute(Interner, ¶meters); let krate = func.lookup(db.upcast()).module(db.upcast()).krate(); write_bounds_like_dyn_trait_with_prefix( f, "impl", bounds.skip_binders(), SizedByDefault::Sized { anchor: krate }, )?; // FIXME: it would maybe be good to distinguish this from the alias type (when debug printing), and to show the substitution } ImplTraitId::AsyncBlockTypeImplTrait(body, ..) => { let future_trait = db .lang_item(body.module(db.upcast()).krate(), LangItem::Future) .and_then(LangItemTarget::as_trait); let output = future_trait.and_then(|t| { db.trait_data(t).associated_type_by_name(&hir_expand::name!(Output)) }); write!(f, "impl ")?; if let Some(t) = future_trait { f.start_location_link(t.into()); } write!(f, "Future")?; if future_trait.is_some() { f.end_location_link(); } write!(f, "<")?; if let Some(t) = output { f.start_location_link(t.into()); } write!(f, "Output")?; if output.is_some() { f.end_location_link(); } write!(f, " = ")?; parameters.at(Interner, 0).hir_fmt(f)?; write!(f, ">")?; } } } TyKind::Closure(id, substs) => { if f.display_target.is_source_code() { if !f.display_target.allows_opaque() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::OpaqueType, )); } else if f.closure_style != ClosureStyle::ImplFn { never!("Only `impl Fn` is valid for displaying closures in source code"); } } match f.closure_style { ClosureStyle::Hide => return write!(f, "{TYPE_HINT_TRUNCATION}"), ClosureStyle::ClosureWithId => { return write!(f, "{{closure#{:?}}}", id.0.as_u32()) } ClosureStyle::ClosureWithSubst => { write!(f, "{{closure#{:?}}}", id.0.as_u32())?; return hir_fmt_generics(f, substs, None); } _ => (), } let sig = ClosureSubst(substs).sig_ty().callable_sig(db); if let Some(sig) = sig { let (def, _) = db.lookup_intern_closure((*id).into()); let infer = db.infer(def); let (_, kind) = infer.closure_info(id); match f.closure_style { ClosureStyle::ImplFn => write!(f, "impl {kind:?}(")?, ClosureStyle::RANotation => write!(f, "|")?, _ => unreachable!(), } if sig.params().is_empty() { } else if f.should_truncate() { write!(f, "{TYPE_HINT_TRUNCATION}")?; } else { f.write_joined(sig.params(), ", ")?; }; match f.closure_style { ClosureStyle::ImplFn => write!(f, ")")?, ClosureStyle::RANotation => write!(f, "|")?, _ => unreachable!(), } if f.closure_style == ClosureStyle::RANotation || !sig.ret().is_unit() { write!(f, " -> ")?; sig.ret().hir_fmt(f)?; } } else { write!(f, "{{closure}}")?; } } TyKind::Placeholder(idx) => { let id = from_placeholder_idx(db, *idx); let generics = generics(db.upcast(), id.parent); let param_data = &generics.params.type_or_consts[id.local_id]; match param_data { TypeOrConstParamData::TypeParamData(p) => match p.provenance { TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => { write!( f, "{}", p.name.clone().unwrap_or_else(Name::missing).display(f.db.upcast()) )? } TypeParamProvenance::ArgumentImplTrait => { let substs = generics.placeholder_subst(db); let bounds = db .generic_predicates(id.parent) .iter() .map(|pred| pred.clone().substitute(Interner, &substs)) .filter(|wc| match &wc.skip_binders() { WhereClause::Implemented(tr) => { &tr.self_type_parameter(Interner) == self } WhereClause::AliasEq(AliasEq { alias: AliasTy::Projection(proj), ty: _, }) => &proj.self_type_parameter(db) == self, _ => false, }) .collect::>(); let krate = id.parent.module(db.upcast()).krate(); write_bounds_like_dyn_trait_with_prefix( f, "impl", &bounds, SizedByDefault::Sized { anchor: krate }, )?; } }, TypeOrConstParamData::ConstParamData(p) => { write!(f, "{}", p.name.display(f.db.upcast()))?; } } } TyKind::BoundVar(idx) => idx.hir_fmt(f)?, TyKind::Dyn(dyn_ty) => { // Reorder bounds to satisfy `write_bounds_like_dyn_trait()`'s expectation. // FIXME: `Iterator::partition_in_place()` or `Vec::drain_filter()` may make it // more efficient when either of them hits stable. let mut bounds: SmallVec<[_; 4]> = dyn_ty.bounds.skip_binders().iter(Interner).cloned().collect(); let (auto_traits, others): (SmallVec<[_; 4]>, _) = bounds.drain(1..).partition(|b| b.skip_binders().trait_id().is_some()); bounds.extend(others); bounds.extend(auto_traits); write_bounds_like_dyn_trait_with_prefix( f, "dyn", &bounds, SizedByDefault::NotSized, )?; } TyKind::Alias(AliasTy::Projection(p_ty)) => p_ty.hir_fmt(f)?, TyKind::Alias(AliasTy::Opaque(opaque_ty)) => { if !f.display_target.allows_opaque() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::OpaqueType, )); } let impl_trait_id = db.lookup_intern_impl_trait_id(opaque_ty.opaque_ty_id.into()); match impl_trait_id { ImplTraitId::ReturnTypeImplTrait(func, idx) => { let datas = db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas).as_ref().map(|rpit| rpit.impl_traits[idx].bounds.clone()); let bounds = data.substitute(Interner, &opaque_ty.substitution); let krate = func.lookup(db.upcast()).module(db.upcast()).krate(); write_bounds_like_dyn_trait_with_prefix( f, "impl", bounds.skip_binders(), SizedByDefault::Sized { anchor: krate }, )?; } ImplTraitId::AsyncBlockTypeImplTrait(..) => { write!(f, "{{async block}}")?; } }; } TyKind::Error => { if f.display_target.is_source_code() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::UnknownType, )); } write!(f, "{{unknown}}")?; } TyKind::InferenceVar(..) => write!(f, "_")?, TyKind::Coroutine(_, subst) => { if f.display_target.is_source_code() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::Coroutine, )); } let subst = subst.as_slice(Interner); let a: Option> = subst .get(subst.len() - 3..) .and_then(|args| args.iter().map(|arg| arg.ty(Interner)).collect()); if let Some([resume_ty, yield_ty, ret_ty]) = a.as_deref() { write!(f, "|")?; resume_ty.hir_fmt(f)?; write!(f, "|")?; write!(f, " yields ")?; yield_ty.hir_fmt(f)?; write!(f, " -> ")?; ret_ty.hir_fmt(f)?; } else { // This *should* be unreachable, but fallback just in case. write!(f, "{{coroutine}}")?; } } TyKind::CoroutineWitness(..) => write!(f, "{{coroutine witness}}")?, } Ok(()) } } fn hir_fmt_generics( f: &mut HirFormatter<'_>, parameters: &Substitution, generic_def: Option, ) -> Result<(), HirDisplayError> { let db = f.db; let lifetime_args_count = generic_def.map_or(0, |g| db.generic_params(g).lifetimes.len()); if parameters.len(Interner) + lifetime_args_count > 0 { let parameters_to_write = if f.display_target.is_source_code() || f.omit_verbose_types() { match generic_def .map(|generic_def_id| db.generic_defaults(generic_def_id)) .filter(|defaults| !defaults.is_empty()) { None => parameters.as_slice(Interner), Some(default_parameters) => { fn should_show( parameter: &GenericArg, default_parameters: &[Binders], i: usize, parameters: &Substitution, ) -> bool { if parameter.ty(Interner).map(|it| it.kind(Interner)) == Some(&TyKind::Error) { return true; } if let Some(ConstValue::Concrete(c)) = parameter.constant(Interner).map(|it| &it.data(Interner).value) { if c.interned == ConstScalar::Unknown { return true; } } let default_parameter = match default_parameters.get(i) { Some(it) => it, None => return true, }; let actual_default = default_parameter.clone().substitute(Interner, ¶meters); parameter != &actual_default } let mut default_from = 0; for (i, parameter) in parameters.iter(Interner).enumerate() { if should_show(parameter, &default_parameters, i, parameters) { default_from = i + 1; } } ¶meters.as_slice(Interner)[0..default_from] } } } else { parameters.as_slice(Interner) }; if !parameters_to_write.is_empty() || lifetime_args_count != 0 { write!(f, "<")?; let mut first = true; for _ in 0..lifetime_args_count { if !first { write!(f, ", ")?; } first = false; write!(f, "'_")?; } for generic_arg in parameters_to_write { if !first { write!(f, ", ")?; } first = false; if f.display_target.is_source_code() && generic_arg.ty(Interner).map(|ty| ty.kind(Interner)) == Some(&TyKind::Error) { write!(f, "_")?; } else { generic_arg.hir_fmt(f)?; } } write!(f, ">")?; } } Ok(()) } impl HirDisplay for CallableSig { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { let CallableSig { params_and_return: _, is_varargs, safety, abi: _ } = *self; if let Safety::Unsafe = safety { write!(f, "unsafe ")?; } // FIXME: Enable this when the FIXME on FnAbi regarding PartialEq is fixed. // if !matches!(abi, FnAbi::Rust) { // f.write_str("extern \"")?; // f.write_str(abi.as_str())?; // f.write_str("\" ")?; // } write!(f, "fn(")?; f.write_joined(self.params(), ", ")?; if is_varargs { if self.params().is_empty() { write!(f, "...")?; } else { write!(f, ", ...")?; } } write!(f, ")")?; let ret = self.ret(); if !ret.is_unit() { write!(f, " -> ")?; ret.hir_fmt(f)?; } Ok(()) } } fn fn_traits(db: &dyn DefDatabase, trait_: TraitId) -> impl Iterator + '_ { let krate = trait_.lookup(db).container.krate(); utils::fn_traits(db, krate) } #[derive(Clone, Copy, PartialEq, Eq)] pub enum SizedByDefault { NotSized, Sized { anchor: CrateId }, } impl SizedByDefault { fn is_sized_trait(self, trait_: TraitId, db: &dyn DefDatabase) -> bool { match self { Self::NotSized => false, Self::Sized { anchor } => { let sized_trait = db .lang_item(anchor, LangItem::Sized) .and_then(|lang_item| lang_item.as_trait()); Some(trait_) == sized_trait } } } } pub fn write_bounds_like_dyn_trait_with_prefix( f: &mut HirFormatter<'_>, prefix: &str, predicates: &[QuantifiedWhereClause], default_sized: SizedByDefault, ) -> Result<(), HirDisplayError> { write!(f, "{prefix}")?; if !predicates.is_empty() || predicates.is_empty() && matches!(default_sized, SizedByDefault::Sized { .. }) { write!(f, " ")?; write_bounds_like_dyn_trait(f, predicates, default_sized) } else { Ok(()) } } fn write_bounds_like_dyn_trait( f: &mut HirFormatter<'_>, predicates: &[QuantifiedWhereClause], default_sized: SizedByDefault, ) -> Result<(), HirDisplayError> { // Note: This code is written to produce nice results (i.e. // corresponding to surface Rust) for types that can occur in // actual Rust. It will have weird results if the predicates // aren't as expected (i.e. self types = $0, projection // predicates for a certain trait come after the Implemented // predicate for that trait). let mut first = true; let mut angle_open = false; let mut is_fn_trait = false; let mut is_sized = false; for p in predicates.iter() { match p.skip_binders() { WhereClause::Implemented(trait_ref) => { let trait_ = trait_ref.hir_trait_id(); if default_sized.is_sized_trait(trait_, f.db.upcast()) { is_sized = true; if matches!(default_sized, SizedByDefault::Sized { .. }) { // Don't print +Sized, but rather +?Sized if absent. continue; } } if !is_fn_trait { is_fn_trait = fn_traits(f.db.upcast(), trait_).any(|it| it == trait_); } if !is_fn_trait && angle_open { write!(f, ">")?; angle_open = false; } if !first { write!(f, " + ")?; } // We assume that the self type is ^0.0 (i.e. the // existential) here, which is the only thing that's // possible in actual Rust, and hence don't print it f.start_location_link(trait_.into()); write!(f, "{}", f.db.trait_data(trait_).name.display(f.db.upcast()))?; f.end_location_link(); if let [_, params @ ..] = trait_ref.substitution.as_slice(Interner) { if is_fn_trait { if let Some(args) = params.first().and_then(|it| it.assert_ty_ref(Interner).as_tuple()) { write!(f, "(")?; f.write_joined(args.as_slice(Interner), ", ")?; write!(f, ")")?; } } else if !params.is_empty() { write!(f, "<")?; f.write_joined(params, ", ")?; // there might be assoc type bindings, so we leave the angle brackets open angle_open = true; } } } WhereClause::AliasEq(alias_eq) if is_fn_trait => { is_fn_trait = false; if !alias_eq.ty.is_unit() { write!(f, " -> ")?; alias_eq.ty.hir_fmt(f)?; } } WhereClause::AliasEq(AliasEq { ty, alias }) => { // in types in actual Rust, these will always come // after the corresponding Implemented predicate if angle_open { write!(f, ", ")?; } else { write!(f, "<")?; angle_open = true; } if let AliasTy::Projection(proj) = alias { let assoc_ty_id = from_assoc_type_id(proj.associated_ty_id); let type_alias = f.db.type_alias_data(assoc_ty_id); f.start_location_link(assoc_ty_id.into()); write!(f, "{}", type_alias.name.display(f.db.upcast()))?; f.end_location_link(); let proj_arg_count = generics(f.db.upcast(), assoc_ty_id.into()).len_self(); if proj_arg_count > 0 { write!(f, "<")?; f.write_joined( &proj.substitution.as_slice(Interner)[..proj_arg_count], ", ", )?; write!(f, ">")?; } write!(f, " = ")?; } ty.hir_fmt(f)?; } // FIXME implement these WhereClause::LifetimeOutlives(_) => {} WhereClause::TypeOutlives(_) => {} } first = false; } if angle_open { write!(f, ">")?; } if let SizedByDefault::Sized { anchor } = default_sized { let sized_trait = f.db.lang_item(anchor, LangItem::Sized).and_then(|lang_item| lang_item.as_trait()); if !is_sized { if !first { write!(f, " + ")?; } if let Some(sized_trait) = sized_trait { f.start_location_link(sized_trait.into()); } write!(f, "?Sized")?; } else if first { if let Some(sized_trait) = sized_trait { f.start_location_link(sized_trait.into()); } write!(f, "Sized")?; } if sized_trait.is_some() { f.end_location_link(); } } Ok(()) } fn fmt_trait_ref( f: &mut HirFormatter<'_>, tr: &TraitRef, use_as: bool, ) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{TYPE_HINT_TRUNCATION}"); } tr.self_type_parameter(Interner).hir_fmt(f)?; if use_as { write!(f, " as ")?; } else { write!(f, ": ")?; } let trait_ = tr.hir_trait_id(); f.start_location_link(trait_.into()); write!(f, "{}", f.db.trait_data(trait_).name.display(f.db.upcast()))?; f.end_location_link(); if tr.substitution.len(Interner) > 1 { write!(f, "<")?; f.write_joined(&tr.substitution.as_slice(Interner)[1..], ", ")?; write!(f, ">")?; } Ok(()) } impl HirDisplay for TraitRef { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { fmt_trait_ref(f, self, false) } } impl HirDisplay for WhereClause { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{TYPE_HINT_TRUNCATION}"); } match self { WhereClause::Implemented(trait_ref) => trait_ref.hir_fmt(f)?, WhereClause::AliasEq(AliasEq { alias: AliasTy::Projection(projection_ty), ty }) => { write!(f, "<")?; fmt_trait_ref(f, &projection_ty.trait_ref(f.db), true)?; write!(f, ">::",)?; let type_alias = from_assoc_type_id(projection_ty.associated_ty_id); f.start_location_link(type_alias.into()); write!(f, "{}", f.db.type_alias_data(type_alias).name.display(f.db.upcast()),)?; f.end_location_link(); write!(f, " = ")?; ty.hir_fmt(f)?; } WhereClause::AliasEq(_) => write!(f, "{{error}}")?, // FIXME implement these WhereClause::TypeOutlives(..) => {} WhereClause::LifetimeOutlives(..) => {} } Ok(()) } } impl HirDisplay for LifetimeOutlives { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { self.a.hir_fmt(f)?; write!(f, ": ")?; self.b.hir_fmt(f) } } impl HirDisplay for Lifetime { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { self.interned().hir_fmt(f) } } impl HirDisplay for LifetimeData { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { LifetimeData::BoundVar(idx) => idx.hir_fmt(f), LifetimeData::InferenceVar(_) => write!(f, "_"), LifetimeData::Placeholder(idx) => { let id = lt_from_placeholder_idx(f.db, *idx); let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.lifetimes[id.local_id]; write!(f, "{}", param_data.name.display(f.db.upcast()))?; Ok(()) } LifetimeData::Static => write!(f, "'static"), LifetimeData::Erased => Ok(()), LifetimeData::Phantom(_, _) => Ok(()), } } } impl HirDisplay for DomainGoal { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { DomainGoal::Holds(wc) => { write!(f, "Holds(")?; wc.hir_fmt(f)?; write!(f, ")")?; } _ => write!(f, "?")?, } Ok(()) } } pub fn write_visibility( module_id: ModuleId, vis: Visibility, f: &mut HirFormatter<'_>, ) -> Result<(), HirDisplayError> { match vis { Visibility::Public => write!(f, "pub "), Visibility::Module(vis_id, _) => { let def_map = module_id.def_map(f.db.upcast()); let root_module_id = def_map.module_id(DefMap::ROOT); if vis_id == module_id { // pub(self) or omitted Ok(()) } else if root_module_id == vis_id { write!(f, "pub(crate) ") } else if module_id.containing_module(f.db.upcast()) == Some(vis_id) { write!(f, "pub(super) ") } else { write!(f, "pub(in ...) ") } } } } impl HirDisplay for TypeRef { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { TypeRef::Never => write!(f, "!")?, TypeRef::Placeholder => write!(f, "_")?, TypeRef::Tuple(elems) => { write!(f, "(")?; f.write_joined(elems, ", ")?; if elems.len() == 1 { write!(f, ",")?; } write!(f, ")")?; } TypeRef::Path(path) => path.hir_fmt(f)?, TypeRef::RawPtr(inner, mutability) => { let mutability = match mutability { hir_def::type_ref::Mutability::Shared => "*const ", hir_def::type_ref::Mutability::Mut => "*mut ", }; write!(f, "{mutability}")?; inner.hir_fmt(f)?; } TypeRef::Reference(inner, lifetime, mutability) => { let mutability = match mutability { hir_def::type_ref::Mutability::Shared => "", hir_def::type_ref::Mutability::Mut => "mut ", }; write!(f, "&")?; if let Some(lifetime) = lifetime { write!(f, "{} ", lifetime.name.display(f.db.upcast()))?; } write!(f, "{mutability}")?; inner.hir_fmt(f)?; } TypeRef::Array(inner, len) => { write!(f, "[")?; inner.hir_fmt(f)?; write!(f, "; {}]", len.display(f.db.upcast()))?; } TypeRef::Slice(inner) => { write!(f, "[")?; inner.hir_fmt(f)?; write!(f, "]")?; } &TypeRef::Fn(ref parameters, is_varargs, is_unsafe, ref abi) => { if is_unsafe { write!(f, "unsafe ")?; } if let Some(abi) = abi { f.write_str("extern \"")?; f.write_str(abi)?; f.write_str("\" ")?; } write!(f, "fn(")?; if let Some(((_, return_type), function_parameters)) = parameters.split_last() { for index in 0..function_parameters.len() { let (param_name, param_type) = &function_parameters[index]; if let Some(name) = param_name { write!(f, "{}: ", name.display(f.db.upcast()))?; } param_type.hir_fmt(f)?; if index != function_parameters.len() - 1 { write!(f, ", ")?; } } if is_varargs { write!(f, "{}...", if parameters.len() == 1 { "" } else { ", " })?; } write!(f, ")")?; match &return_type { TypeRef::Tuple(tup) if tup.is_empty() => {} _ => { write!(f, " -> ")?; return_type.hir_fmt(f)?; } } } } TypeRef::ImplTrait(bounds) => { write!(f, "impl ")?; f.write_joined(bounds, " + ")?; } TypeRef::DynTrait(bounds) => { write!(f, "dyn ")?; f.write_joined(bounds, " + ")?; } TypeRef::Macro(macro_call) => { let ctx = hir_def::lower::LowerCtx::with_span_map( f.db.upcast(), f.db.span_map(macro_call.file_id), ); let macro_call = macro_call.to_node(f.db.upcast()); match macro_call.path() { Some(path) => match Path::from_src(&ctx, path) { Some(path) => path.hir_fmt(f)?, None => write!(f, "{{macro}}")?, }, None => write!(f, "{{macro}}")?, } write!(f, "!(..)")?; } TypeRef::Error => write!(f, "{{error}}")?, } Ok(()) } } impl HirDisplay for TypeBound { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { TypeBound::Path(path, modifier) => { match modifier { TraitBoundModifier::None => (), TraitBoundModifier::Maybe => write!(f, "?")?, } path.hir_fmt(f) } TypeBound::Lifetime(lifetime) => write!(f, "{}", lifetime.name.display(f.db.upcast())), TypeBound::ForLifetime(lifetimes, path) => { write!( f, "for<{}> ", lifetimes.iter().map(|it| it.display(f.db.upcast())).format(", ") )?; path.hir_fmt(f) } TypeBound::Error => write!(f, "{{error}}"), } } } impl HirDisplay for Path { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match (self.type_anchor(), self.kind()) { (Some(anchor), _) => { write!(f, "<")?; anchor.hir_fmt(f)?; write!(f, ">")?; } (_, PathKind::Plain) => {} (_, PathKind::Abs) => {} (_, PathKind::Crate) => write!(f, "crate")?, (_, PathKind::Super(0)) => write!(f, "self")?, (_, PathKind::Super(n)) => { for i in 0..*n { if i > 0 { write!(f, "::")?; } write!(f, "super")?; } } (_, PathKind::DollarCrate(id)) => { // Resolve `$crate` to the crate's display name. // FIXME: should use the dependency name instead if available, but that depends on // the crate invoking `HirDisplay` let crate_graph = f.db.crate_graph(); let name = crate_graph[*id] .display_name .as_ref() .map(|name| name.canonical_name()) .unwrap_or("$crate"); write!(f, "{name}")? } } // Convert trait's `Self` bound back to the surface syntax. Note there is no associated // trait, so there can only be one path segment that `has_self_type`. The `Self` type // itself can contain further qualified path through, which will be handled by recursive // `hir_fmt`s. // // `trait_mod::Trait::Assoc` // => // `>::Assoc` let trait_self_ty = self.segments().iter().find_map(|seg| { let generic_args = seg.args_and_bindings?; generic_args.has_self_type.then(|| &generic_args.args[0]) }); if let Some(ty) = trait_self_ty { write!(f, "<")?; ty.hir_fmt(f)?; write!(f, " as ")?; // Now format the path of the trait... } for (seg_idx, segment) in self.segments().iter().enumerate() { if !matches!(self.kind(), PathKind::Plain) || seg_idx > 0 { write!(f, "::")?; } write!(f, "{}", segment.name.display(f.db.upcast()))?; if let Some(generic_args) = segment.args_and_bindings { // We should be in type context, so format as `Foo` instead of `Foo::`. // Do we actually format expressions? if generic_args.desugared_from_fn { // First argument will be a tuple, which already includes the parentheses. // If the tuple only contains 1 item, write it manually to avoid the trailing `,`. if let hir_def::path::GenericArg::Type(TypeRef::Tuple(v)) = &generic_args.args[0] { if v.len() == 1 { write!(f, "(")?; v[0].hir_fmt(f)?; write!(f, ")")?; } else { generic_args.args[0].hir_fmt(f)?; } } if let Some(ret) = &generic_args.bindings[0].type_ref { if !matches!(ret, TypeRef::Tuple(v) if v.is_empty()) { write!(f, " -> ")?; ret.hir_fmt(f)?; } } return Ok(()); } let mut first = true; // Skip the `Self` bound if exists. It's handled outside the loop. for arg in &generic_args.args[generic_args.has_self_type as usize..] { if first { first = false; write!(f, "<")?; } else { write!(f, ", ")?; } arg.hir_fmt(f)?; } for binding in generic_args.bindings.iter() { if first { first = false; write!(f, "<")?; } else { write!(f, ", ")?; } write!(f, "{}", binding.name.display(f.db.upcast()))?; match &binding.type_ref { Some(ty) => { write!(f, " = ")?; ty.hir_fmt(f)? } None => { write!(f, ": ")?; f.write_joined(binding.bounds.iter(), " + ")?; } } } // There may be no generic arguments to print, in case of a trait having only a // single `Self` bound which is converted to `::Assoc`. if !first { write!(f, ">")?; } // Current position: `|` if generic_args.has_self_type { write!(f, ">")?; } } } Ok(()) } } impl HirDisplay for hir_def::path::GenericArg { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { hir_def::path::GenericArg::Type(ty) => ty.hir_fmt(f), hir_def::path::GenericArg::Const(c) => write!(f, "{}", c.display(f.db.upcast())), hir_def::path::GenericArg::Lifetime(lifetime) => { write!(f, "{}", lifetime.name.display(f.db.upcast())) } } } }