//! # Token Streams //! //! `TokenStream`s represent syntactic objects before they are converted into ASTs. //! A `TokenStream` is, roughly speaking, a sequence of [`TokenTree`]s, //! which are themselves a single [`Token`] or a `Delimited` subsequence of tokens. //! //! ## Ownership //! //! `TokenStream`s are persistent data structures constructed as ropes with reference //! counted-children. In general, this means that calling an operation on a `TokenStream` //! (such as `slice`) produces an entirely new `TokenStream` from the borrowed reference to //! the original. This essentially coerces `TokenStream`s into "views" of their subparts, //! and a borrowed `TokenStream` is sufficient to build an owned `TokenStream` without taking //! ownership of the original. use crate::token::{self, DelimToken, Token, TokenKind}; use crate::AttrVec; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::sync::{self, Lrc}; use rustc_macros::HashStable_Generic; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use rustc_span::{Span, DUMMY_SP}; use smallvec::{smallvec, SmallVec}; use std::{fmt, iter, mem}; /// When the main Rust parser encounters a syntax-extension invocation, it /// parses the arguments to the invocation as a token tree. This is a very /// loose structure, such that all sorts of different AST fragments can /// be passed to syntax extensions using a uniform type. /// /// If the syntax extension is an MBE macro, it will attempt to match its /// LHS token tree against the provided token tree, and if it finds a /// match, will transcribe the RHS token tree, splicing in any captured /// `macro_parser::matched_nonterminals` into the `SubstNt`s it finds. /// /// The RHS of an MBE macro is the only place `SubstNt`s are substituted. /// Nothing special happens to misnamed or misplaced `SubstNt`s. #[derive(Debug, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)] pub enum TokenTree { /// A single token. Token(Token), /// A delimited sequence of token trees. Delimited(DelimSpan, DelimToken, TokenStream), } #[derive(Copy, Clone)] pub enum CanSynthesizeMissingTokens { Yes, No, } // Ensure all fields of `TokenTree` is `Send` and `Sync`. #[cfg(parallel_compiler)] fn _dummy() where Token: Send + Sync, DelimSpan: Send + Sync, DelimToken: Send + Sync, TokenStream: Send + Sync, { } impl TokenTree { /// Checks if this `TokenTree` is equal to the other, regardless of span information. pub fn eq_unspanned(&self, other: &TokenTree) -> bool { match (self, other) { (TokenTree::Token(token), TokenTree::Token(token2)) => token.kind == token2.kind, (TokenTree::Delimited(_, delim, tts), TokenTree::Delimited(_, delim2, tts2)) => { delim == delim2 && tts.eq_unspanned(&tts2) } _ => false, } } /// Retrieves the `TokenTree`'s span. pub fn span(&self) -> Span { match self { TokenTree::Token(token) => token.span, TokenTree::Delimited(sp, ..) => sp.entire(), } } /// Modify the `TokenTree`'s span in-place. pub fn set_span(&mut self, span: Span) { match self { TokenTree::Token(token) => token.span = span, TokenTree::Delimited(dspan, ..) => *dspan = DelimSpan::from_single(span), } } pub fn token(kind: TokenKind, span: Span) -> TokenTree { TokenTree::Token(Token::new(kind, span)) } /// Returns the opening delimiter as a token tree. pub fn open_tt(span: DelimSpan, delim: DelimToken) -> TokenTree { TokenTree::token(token::OpenDelim(delim), span.open) } /// Returns the closing delimiter as a token tree. pub fn close_tt(span: DelimSpan, delim: DelimToken) -> TokenTree { TokenTree::token(token::CloseDelim(delim), span.close) } pub fn uninterpolate(self) -> TokenTree { match self { TokenTree::Token(token) => TokenTree::Token(token.uninterpolate().into_owned()), tt => tt, } } } impl HashStable for TokenStream where CTX: crate::HashStableContext, { fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) { for sub_tt in self.trees() { sub_tt.hash_stable(hcx, hasher); } } } pub trait CreateTokenStream: sync::Send + sync::Sync { fn create_token_stream(&self) -> AttrAnnotatedTokenStream; } impl CreateTokenStream for AttrAnnotatedTokenStream { fn create_token_stream(&self) -> AttrAnnotatedTokenStream { self.clone() } } /// A lazy version of [`TokenStream`], which defers creation /// of an actual `TokenStream` until it is needed. /// `Box` is here only to reduce the structure size. #[derive(Clone)] pub struct LazyTokenStream(Lrc>); impl LazyTokenStream { pub fn new(inner: impl CreateTokenStream + 'static) -> LazyTokenStream { LazyTokenStream(Lrc::new(Box::new(inner))) } pub fn create_token_stream(&self) -> AttrAnnotatedTokenStream { self.0.create_token_stream() } } impl fmt::Debug for LazyTokenStream { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "LazyTokenStream({:?})", self.create_token_stream()) } } impl Encodable for LazyTokenStream { fn encode(&self, s: &mut S) -> Result<(), S::Error> { // Used by AST json printing. Encodable::encode(&self.create_token_stream(), s) } } impl Decodable for LazyTokenStream { fn decode(_d: &mut D) -> Result { panic!("Attempted to decode LazyTokenStream"); } } impl HashStable for LazyTokenStream { fn hash_stable(&self, _hcx: &mut CTX, _hasher: &mut StableHasher) { panic!("Attempted to compute stable hash for LazyTokenStream"); } } /// A `AttrAnnotatedTokenStream` is similar to a `TokenStream`, but with extra /// information about the tokens for attribute targets. This is used /// during expansion to perform early cfg-expansion, and to process attributes /// during proc-macro invocations. #[derive(Clone, Debug, Default, Encodable, Decodable)] pub struct AttrAnnotatedTokenStream(pub Lrc>); /// Like `TokenTree`, but for `AttrAnnotatedTokenStream` #[derive(Clone, Debug, Encodable, Decodable)] pub enum AttrAnnotatedTokenTree { Token(Token), Delimited(DelimSpan, DelimToken, AttrAnnotatedTokenStream), /// Stores the attributes for an attribute target, /// along with the tokens for that attribute target. /// See `AttributesData` for more information Attributes(AttributesData), } impl AttrAnnotatedTokenStream { pub fn new(tokens: Vec<(AttrAnnotatedTokenTree, Spacing)>) -> AttrAnnotatedTokenStream { AttrAnnotatedTokenStream(Lrc::new(tokens)) } /// Converts this `AttrAnnotatedTokenStream` to a plain `TokenStream /// During conversion, `AttrAnnotatedTokenTree::Attributes` get 'flattened' /// back to a `TokenStream` of the form `outer_attr attr_target`. /// If there are inner attributes, they are inserted into the proper /// place in the attribute target tokens. pub fn to_tokenstream(&self) -> TokenStream { let trees: Vec<_> = self .0 .iter() .flat_map(|tree| match &tree.0 { AttrAnnotatedTokenTree::Token(inner) => { smallvec![(TokenTree::Token(inner.clone()), tree.1)].into_iter() } AttrAnnotatedTokenTree::Delimited(span, delim, stream) => smallvec![( TokenTree::Delimited(*span, *delim, stream.to_tokenstream()), tree.1, )] .into_iter(), AttrAnnotatedTokenTree::Attributes(data) => { let mut outer_attrs = Vec::new(); let mut inner_attrs = Vec::new(); for attr in &data.attrs { match attr.style { crate::AttrStyle::Outer => { outer_attrs.push(attr); } crate::AttrStyle::Inner => { inner_attrs.push(attr); } } } let mut target_tokens: Vec<_> = data .tokens .create_token_stream() .to_tokenstream() .0 .iter() .cloned() .collect(); if !inner_attrs.is_empty() { let mut found = false; // Check the last two trees (to account for a trailing semi) for (tree, _) in target_tokens.iter_mut().rev().take(2) { if let TokenTree::Delimited(span, delim, delim_tokens) = tree { // Inner attributes are only supported on extern blocks, functions, impls, // and modules. All of these have their inner attributes placed at // the beginning of the rightmost outermost braced group: // e.g. fn foo() { #![my_attr} } // // Therefore, we can insert them back into the right location // without needing to do any extra position tracking. // // Note: Outline modules are an exception - they can // have attributes like `#![my_attr]` at the start of a file. // Support for custom attributes in this position is not // properly implemented - we always synthesize fake tokens, // so we never reach this code. let mut builder = TokenStreamBuilder::new(); for inner_attr in inner_attrs { builder.push(inner_attr.tokens().to_tokenstream()); } builder.push(delim_tokens.clone()); *tree = TokenTree::Delimited(*span, *delim, builder.build()); found = true; break; } } assert!( found, "Failed to find trailing delimited group in: {:?}", target_tokens ); } let mut flat: SmallVec<[_; 1]> = SmallVec::new(); for attr in outer_attrs { // FIXME: Make this more efficient flat.extend(attr.tokens().to_tokenstream().0.clone().iter().cloned()); } flat.extend(target_tokens); flat.into_iter() } }) .collect(); TokenStream::new(trees) } } /// Stores the tokens for an attribute target, along /// with its attributes. /// /// This is constructed during parsing when we need to capture /// tokens. /// /// For example, `#[cfg(FALSE)] struct Foo {}` would /// have an `attrs` field containing the `#[cfg(FALSE)]` attr, /// and a `tokens` field storing the (unparesd) tokens `struct Foo {}` #[derive(Clone, Debug, Encodable, Decodable)] pub struct AttributesData { /// Attributes, both outer and inner. /// These are stored in the original order that they were parsed in. pub attrs: AttrVec, /// The underlying tokens for the attribute target that `attrs` /// are applied to pub tokens: LazyTokenStream, } /// A `TokenStream` is an abstract sequence of tokens, organized into [`TokenTree`]s. /// /// The goal is for procedural macros to work with `TokenStream`s and `TokenTree`s /// instead of a representation of the abstract syntax tree. /// Today's `TokenTree`s can still contain AST via `token::Interpolated` for /// backwards compatibility. #[derive(Clone, Debug, Default, Encodable, Decodable)] pub struct TokenStream(pub(crate) Lrc>); pub type TreeAndSpacing = (TokenTree, Spacing); // `TokenStream` is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] rustc_data_structures::static_assert_size!(TokenStream, 8); #[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable)] pub enum Spacing { Alone, Joint, } impl TokenStream { /// Given a `TokenStream` with a `Stream` of only two arguments, return a new `TokenStream` /// separating the two arguments with a comma for diagnostic suggestions. pub fn add_comma(&self) -> Option<(TokenStream, Span)> { // Used to suggest if a user writes `foo!(a b);` let mut suggestion = None; let mut iter = self.0.iter().enumerate().peekable(); while let Some((pos, ts)) = iter.next() { if let Some((_, next)) = iter.peek() { let sp = match (&ts, &next) { (_, (TokenTree::Token(Token { kind: token::Comma, .. }), _)) => continue, ( (TokenTree::Token(token_left), Spacing::Alone), (TokenTree::Token(token_right), _), ) if ((token_left.is_ident() && !token_left.is_reserved_ident()) || token_left.is_lit()) && ((token_right.is_ident() && !token_right.is_reserved_ident()) || token_right.is_lit()) => { token_left.span } ((TokenTree::Delimited(sp, ..), Spacing::Alone), _) => sp.entire(), _ => continue, }; let sp = sp.shrink_to_hi(); let comma = (TokenTree::token(token::Comma, sp), Spacing::Alone); suggestion = Some((pos, comma, sp)); } } if let Some((pos, comma, sp)) = suggestion { let mut new_stream = Vec::with_capacity(self.0.len() + 1); let parts = self.0.split_at(pos + 1); new_stream.extend_from_slice(parts.0); new_stream.push(comma); new_stream.extend_from_slice(parts.1); return Some((TokenStream::new(new_stream), sp)); } None } } impl From<(AttrAnnotatedTokenTree, Spacing)> for AttrAnnotatedTokenStream { fn from((tree, spacing): (AttrAnnotatedTokenTree, Spacing)) -> AttrAnnotatedTokenStream { AttrAnnotatedTokenStream::new(vec![(tree, spacing)]) } } impl From for TokenStream { fn from(tree: TokenTree) -> TokenStream { TokenStream::new(vec![(tree, Spacing::Alone)]) } } impl From for TreeAndSpacing { fn from(tree: TokenTree) -> TreeAndSpacing { (tree, Spacing::Alone) } } impl iter::FromIterator for TokenStream { fn from_iter>(iter: I) -> Self { TokenStream::new(iter.into_iter().map(Into::into).collect::>()) } } impl Eq for TokenStream {} impl PartialEq for TokenStream { fn eq(&self, other: &TokenStream) -> bool { self.trees().eq(other.trees()) } } impl TokenStream { pub fn new(streams: Vec) -> TokenStream { TokenStream(Lrc::new(streams)) } pub fn is_empty(&self) -> bool { self.0.is_empty() } pub fn len(&self) -> usize { self.0.len() } pub fn from_streams(mut streams: SmallVec<[TokenStream; 2]>) -> TokenStream { match streams.len() { 0 => TokenStream::default(), 1 => streams.pop().unwrap(), _ => { // We are going to extend the first stream in `streams` with // the elements from the subsequent streams. This requires // using `make_mut()` on the first stream, and in practice this // doesn't cause cloning 99.9% of the time. // // One very common use case is when `streams` has two elements, // where the first stream has any number of elements within // (often 1, but sometimes many more) and the second stream has // a single element within. // Determine how much the first stream will be extended. // Needed to avoid quadratic blow up from on-the-fly // reallocations (#57735). let num_appends = streams.iter().skip(1).map(|ts| ts.len()).sum(); // Get the first stream. If it's `None`, create an empty // stream. let mut iter = streams.drain(..); let mut first_stream_lrc = iter.next().unwrap().0; // Append the elements to the first stream, after reserving // space for them. let first_vec_mut = Lrc::make_mut(&mut first_stream_lrc); first_vec_mut.reserve(num_appends); for stream in iter { first_vec_mut.extend(stream.0.iter().cloned()); } // Create the final `TokenStream`. TokenStream(first_stream_lrc) } } } pub fn trees(&self) -> Cursor { self.clone().into_trees() } pub fn into_trees(self) -> Cursor { Cursor::new(self) } /// Compares two `TokenStream`s, checking equality without regarding span information. pub fn eq_unspanned(&self, other: &TokenStream) -> bool { let mut t1 = self.trees(); let mut t2 = other.trees(); for (t1, t2) in iter::zip(&mut t1, &mut t2) { if !t1.eq_unspanned(&t2) { return false; } } t1.next().is_none() && t2.next().is_none() } pub fn map_enumerated TokenTree>(self, mut f: F) -> TokenStream { TokenStream(Lrc::new( self.0 .iter() .enumerate() .map(|(i, (tree, is_joint))| (f(i, tree), *is_joint)) .collect(), )) } } // 99.5%+ of the time we have 1 or 2 elements in this vector. #[derive(Clone)] pub struct TokenStreamBuilder(SmallVec<[TokenStream; 2]>); impl TokenStreamBuilder { pub fn new() -> TokenStreamBuilder { TokenStreamBuilder(SmallVec::new()) } pub fn push>(&mut self, stream: T) { let mut stream = stream.into(); // If `self` is not empty and the last tree within the last stream is a // token tree marked with `Joint`... if let Some(TokenStream(ref mut last_stream_lrc)) = self.0.last_mut() { if let Some((TokenTree::Token(last_token), Spacing::Joint)) = last_stream_lrc.last() { // ...and `stream` is not empty and the first tree within it is // a token tree... let TokenStream(ref mut stream_lrc) = stream; if let Some((TokenTree::Token(token), spacing)) = stream_lrc.first() { // ...and the two tokens can be glued together... if let Some(glued_tok) = last_token.glue(&token) { // ...then do so, by overwriting the last token // tree in `self` and removing the first token tree // from `stream`. This requires using `make_mut()` // on the last stream in `self` and on `stream`, // and in practice this doesn't cause cloning 99.9% // of the time. // Overwrite the last token tree with the merged // token. let last_vec_mut = Lrc::make_mut(last_stream_lrc); *last_vec_mut.last_mut().unwrap() = (TokenTree::Token(glued_tok), *spacing); // Remove the first token tree from `stream`. (This // is almost always the only tree in `stream`.) let stream_vec_mut = Lrc::make_mut(stream_lrc); stream_vec_mut.remove(0); // Don't push `stream` if it's empty -- that could // block subsequent token gluing, by getting // between two token trees that should be glued // together. if !stream.is_empty() { self.0.push(stream); } return; } } } } self.0.push(stream); } pub fn build(self) -> TokenStream { TokenStream::from_streams(self.0) } } /// By-reference iterator over a [`TokenStream`]. #[derive(Clone)] pub struct CursorRef<'t> { stream: &'t TokenStream, index: usize, } impl<'t> CursorRef<'t> { fn next_with_spacing(&mut self) -> Option<&'t TreeAndSpacing> { self.stream.0.get(self.index).map(|tree| { self.index += 1; tree }) } } impl<'t> Iterator for CursorRef<'t> { type Item = &'t TokenTree; fn next(&mut self) -> Option<&'t TokenTree> { self.next_with_spacing().map(|(tree, _)| tree) } } /// Owning by-value iterator over a [`TokenStream`]. // FIXME: Many uses of this can be replaced with by-reference iterator to avoid clones. #[derive(Clone)] pub struct Cursor { pub stream: TokenStream, index: usize, } impl Iterator for Cursor { type Item = TokenTree; fn next(&mut self) -> Option { self.next_with_spacing().map(|(tree, _)| tree) } } impl Cursor { fn new(stream: TokenStream) -> Self { Cursor { stream, index: 0 } } pub fn next_with_spacing(&mut self) -> Option { if self.index < self.stream.len() { self.index += 1; Some(self.stream.0[self.index - 1].clone()) } else { None } } pub fn index(&self) -> usize { self.index } pub fn append(&mut self, new_stream: TokenStream) { if new_stream.is_empty() { return; } let index = self.index; let stream = mem::take(&mut self.stream); *self = TokenStream::from_streams(smallvec![stream, new_stream]).into_trees(); self.index = index; } pub fn look_ahead(&self, n: usize) -> Option<&TokenTree> { self.stream.0[self.index..].get(n).map(|(tree, _)| tree) } } #[derive(Debug, Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)] pub struct DelimSpan { pub open: Span, pub close: Span, } impl DelimSpan { pub fn from_single(sp: Span) -> Self { DelimSpan { open: sp, close: sp } } pub fn from_pair(open: Span, close: Span) -> Self { DelimSpan { open, close } } pub fn dummy() -> Self { Self::from_single(DUMMY_SP) } pub fn entire(self) -> Span { self.open.with_hi(self.close.hi()) } }