#![feature( i128_type, rustc_private, conservative_impl_trait, catch_expr, inclusive_range_fields )] #[macro_use] extern crate log; // From rustc. #[macro_use] extern crate rustc; extern crate rustc_mir; extern crate rustc_data_structures; extern crate syntax; extern crate regex; #[macro_use] extern crate lazy_static; use rustc::ty::{self, TyCtxt}; use rustc::ty::layout::{TyLayout, LayoutOf}; use rustc::hir::def_id::DefId; use rustc::mir; use syntax::ast::Mutability; use syntax::codemap::Span; use std::collections::{HashMap, BTreeMap}; pub use rustc::mir::interpret::*; pub use rustc_mir::interpret::*; mod fn_call; mod operator; mod intrinsic; mod helpers; mod memory; mod tls; mod locks; mod range_map; mod validation; use fn_call::EvalContextExt as MissingFnsEvalContextExt; use operator::EvalContextExt as OperatorEvalContextExt; use intrinsic::EvalContextExt as IntrinsicEvalContextExt; use tls::EvalContextExt as TlsEvalContextExt; use locks::LockInfo; use locks::MemoryExt as LockMemoryExt; use validation::EvalContextExt as ValidationEvalContextExt; use range_map::RangeMap; use validation::{ValidationQuery, AbsPlace}; pub fn eval_main<'a, 'tcx: 'a>( tcx: TyCtxt<'a, 'tcx, 'tcx>, main_id: DefId, start_wrapper: Option, ) { fn run_main<'a, 'mir: 'a, 'tcx: 'mir>( ecx: &mut rustc_mir::interpret::EvalContext<'a, 'mir, 'tcx, Evaluator<'tcx>>, main_id: DefId, start_wrapper: Option, ) -> EvalResult<'tcx> { let main_instance = ty::Instance::mono(ecx.tcx.tcx, main_id); let main_mir = ecx.load_mir(main_instance.def)?; let mut cleanup_ptr = None; // Pointer to be deallocated when we are done if !main_mir.return_ty().is_nil() || main_mir.arg_count != 0 { return err!(Unimplemented( "miri does not support main functions without `fn()` type signatures" .to_owned(), )); } if let Some(start_id) = start_wrapper { let main_ret_ty = ecx.tcx.fn_sig(main_id).output(); let main_ret_ty = main_ret_ty.no_late_bound_regions().unwrap(); let start_instance = ty::Instance::resolve( ecx.tcx.tcx, ty::ParamEnv::reveal_all(), start_id, ecx.tcx.mk_substs( ::std::iter::once(ty::subst::Kind::from(main_ret_ty)))).unwrap(); let start_mir = ecx.load_mir(start_instance.def)?; if start_mir.arg_count != 3 { return err!(AbiViolation(format!( "'start' lang item should have three arguments, but has {}", start_mir.arg_count ))); } // Return value let size = ecx.tcx.data_layout.pointer_size.bytes(); let align = ecx.tcx.data_layout.pointer_align; let ret_ptr = ecx.memory_mut().allocate(size, align, Some(MemoryKind::Stack))?; cleanup_ptr = Some(ret_ptr); // Push our stack frame ecx.push_stack_frame( start_instance, start_mir.span, start_mir, Place::from_ptr(ret_ptr, align), StackPopCleanup::None, )?; let mut args = ecx.frame().mir.args_iter(); // First argument: pointer to main() let main_ptr = ecx.memory_mut().create_fn_alloc(main_instance); let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?; let main_ty = main_instance.ty(ecx.tcx.tcx); let main_ptr_ty = ecx.tcx.mk_fn_ptr(main_ty.fn_sig(ecx.tcx.tcx)); ecx.write_value( ValTy { value: Value::ByVal(PrimVal::Ptr(main_ptr)), ty: main_ptr_ty, }, dest, )?; // Second argument (argc): 1 let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?; let ty = ecx.tcx.types.isize; ecx.write_primval(dest, PrimVal::Bytes(1), ty)?; // FIXME: extract main source file path // Third argument (argv): &[b"foo"] let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?; let ty = ecx.tcx.mk_imm_ptr(ecx.tcx.mk_imm_ptr(ecx.tcx.types.u8)); let foo = ecx.memory.allocate_cached(b"foo\0"); let ptr_size = ecx.memory.pointer_size(); let ptr_align = ecx.tcx.data_layout.pointer_align; let foo_ptr = ecx.memory.allocate(ptr_size, ptr_align, None)?; ecx.memory.write_primval(foo_ptr, ptr_align, PrimVal::Ptr(foo.into()), ptr_size, false)?; ecx.memory.mark_static_initialized(foo_ptr.alloc_id, Mutability::Immutable)?; ecx.write_ptr(dest, foo_ptr.into(), ty)?; assert!(args.next().is_none(), "start lang item has more arguments than expected"); } else { ecx.push_stack_frame( main_instance, main_mir.span, main_mir, Place::undef(), StackPopCleanup::None, )?; // No arguments let mut args = ecx.frame().mir.args_iter(); assert!(args.next().is_none(), "main function must not have arguments"); } while ecx.step()? {} ecx.run_tls_dtors()?; if let Some(cleanup_ptr) = cleanup_ptr { ecx.memory_mut().deallocate( cleanup_ptr, None, MemoryKind::Stack, )?; } Ok(()) } let mut ecx = EvalContext::new(tcx.at(syntax::codemap::DUMMY_SP), ty::ParamEnv::reveal_all(), Default::default(), Default::default()); match run_main(&mut ecx, main_id, start_wrapper) { Ok(()) => { let leaks = ecx.memory().leak_report(); if leaks != 0 { tcx.sess.err("the evaluated program leaked memory"); } } Err(mut e) => { ecx.report(&mut e, true, None); } } } #[derive(Default)] pub struct Evaluator<'tcx> { /// Environment variables set by `setenv` /// Miri does not expose env vars from the host to the emulated program pub(crate) env_vars: HashMap, MemoryPointer>, /// Places that were suspended by the validation subsystem, and will be recovered later pub(crate) suspended: HashMap>>, } pub type TlsKey = usize; #[derive(Copy, Clone, Debug)] pub struct TlsEntry<'tcx> { data: Pointer, // Will eventually become a map from thread IDs to `Pointer`s, if we ever support more than one thread. dtor: Option>, } #[derive(Default)] pub struct MemoryData<'tcx> { /// The Key to use for the next thread-local allocation. next_thread_local: TlsKey, /// pthreads-style thread-local storage. thread_local: BTreeMap>, /// Memory regions that are locked by some function /// /// Only mutable (static mut, heap, stack) allocations have an entry in this map. /// The entry is created when allocating the memory and deleted after deallocation. locks: HashMap>>, } impl<'mir, 'tcx: 'mir> Machine<'mir, 'tcx> for Evaluator<'tcx> { type MemoryData = MemoryData<'tcx>; type MemoryKinds = memory::MemoryKind; /// Returns Ok() when the function was handled, fail otherwise fn eval_fn_call<'a>( ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>, instance: ty::Instance<'tcx>, destination: Option<(Place, mir::BasicBlock)>, args: &[ValTy<'tcx>], span: Span, sig: ty::FnSig<'tcx>, ) -> EvalResult<'tcx, bool> { ecx.eval_fn_call(instance, destination, args, span, sig) } fn call_intrinsic<'a>( ecx: &mut rustc_mir::interpret::EvalContext<'a, 'mir, 'tcx, Self>, instance: ty::Instance<'tcx>, args: &[ValTy<'tcx>], dest: Place, dest_layout: TyLayout<'tcx>, target: mir::BasicBlock, ) -> EvalResult<'tcx> { ecx.call_intrinsic(instance, args, dest, dest_layout, target) } fn try_ptr_op<'a>( ecx: &rustc_mir::interpret::EvalContext<'a, 'mir, 'tcx, Self>, bin_op: mir::BinOp, left: PrimVal, left_ty: ty::Ty<'tcx>, right: PrimVal, right_ty: ty::Ty<'tcx>, ) -> EvalResult<'tcx, Option<(PrimVal, bool)>> { ecx.ptr_op(bin_op, left, left_ty, right, right_ty) } fn mark_static_initialized<'a>( _mem: &mut Memory<'a, 'mir, 'tcx, Self>, _id: AllocId, _mutability: Mutability, ) -> EvalResult<'tcx, bool> { /*use memory::MemoryKind::*; match m { // FIXME: This could be allowed, but not for env vars set during miri execution Env => err!(Unimplemented("statics can't refer to env vars".to_owned())), _ => Ok(false), // TODO: What does the bool mean? }*/ Ok(false) } fn init_static<'a>( ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>, cid: GlobalId<'tcx>, ) -> EvalResult<'tcx, AllocId> { let tcx = self.tcx.tcx; let mir = None; let param_env = ty::ParamEnv::reveal_all(); // we start out with the best span we have // and try improving it down the road when more information is available let res = (|| { let mut mir = match mir { Some(mir) => mir, None => ecx.load_mir(cid.instance.def)?, }; if let Some(index) = cid.promoted { mir = &mir.promoted[index]; } span = mir.span; let layout = ecx.layout_of(mir.return_ty().subst(tcx, cid.instance.substs))?; let alloc = tcx.interpret_interner.get_cached(cid.instance.def_id()); let is_static = tcx.is_static(cid.instance.def_id()).is_some(); let alloc = match alloc { Some(alloc) => { assert!(cid.promoted.is_none()); assert!(param_env.caller_bounds.is_empty()); alloc }, None => { assert!(!layout.is_unsized()); let ptr = ecx.memory.allocate( layout.size.bytes(), layout.align, None, )?; if is_static { tcx.interpret_interner.cache(cid.instance.def_id(), ptr.alloc_id); } let internally_mutable = !layout.ty.is_freeze(tcx, param_env, mir.span); let mutability = tcx.is_static(cid.instance.def_id()); let mutability = if mutability == Some(hir::Mutability::MutMutable) || internally_mutable { Mutability::Mutable } else { Mutability::Immutable }; let cleanup = StackPopCleanup::MarkStatic(mutability); let name = ty::tls::with(|tcx| tcx.item_path_str(cid.instance.def_id())); let prom = cid.promoted.map_or(String::new(), |p| format!("::promoted[{:?}]", p)); trace!("const_eval: pushing stack frame for global: {}{}", name, prom); assert!(mir.arg_count == 0); ecx.push_stack_frame( cid.instance, mir.span, mir, Place::from_ptr(ptr, layout.align), cleanup, )?; while ecx.step()? {} ptr.alloc_id } }; let ptr = MemoryPointer::new(alloc, 0).into(); // always try to read the value and report errors Ok((ptr, layout.ty)) })(); let (mem_ptr, _) = res?; Ok(mem_ptr.alloc_id) } fn box_alloc<'a>( ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>, ty: ty::Ty<'tcx>, dest: Place, ) -> EvalResult<'tcx> { let layout = ecx.layout_of(ty)?; // Call the `exchange_malloc` lang item let malloc = ecx.tcx.lang_items().exchange_malloc_fn().unwrap(); let malloc = ty::Instance::mono(ecx.tcx.tcx, malloc); let malloc_mir = ecx.load_mir(malloc.def)?; ecx.push_stack_frame( malloc, malloc_mir.span, malloc_mir, dest, // Don't do anything when we are done. The statement() function will increment // the old stack frame's stmt counter to the next statement, which means that when // exchange_malloc returns, we go on evaluating exactly where we want to be. StackPopCleanup::None, )?; let mut args = ecx.frame().mir.args_iter(); let usize = ecx.tcx.types.usize; // First argument: size let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?; ecx.write_value( ValTy { value: Value::ByVal(PrimVal::Bytes(layout.size.bytes().into())), ty: usize, }, dest, )?; // Second argument: align let dest = ecx.eval_place(&mir::Place::Local(args.next().unwrap()))?; ecx.write_value( ValTy { value: Value::ByVal(PrimVal::Bytes(layout.align.abi().into())), ty: usize, }, dest, )?; // No more arguments assert!(args.next().is_none(), "exchange_malloc lang item has more arguments than expected"); Ok(()) } fn global_item_with_linkage<'a>( ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>, instance: ty::Instance<'tcx>, mutability: Mutability, ) -> EvalResult<'tcx> { // FIXME: check that it's `#[linkage = "extern_weak"]` trace!("Initializing an extern global with NULL"); let ptr_size = ecx.memory.pointer_size(); let ptr_align = ecx.tcx.data_layout.pointer_align; let ptr = ecx.memory.allocate( ptr_size, ptr_align, None, )?; ecx.memory.write_ptr_sized_unsigned(ptr, ptr_align, PrimVal::Bytes(0))?; ecx.memory.mark_static_initialized(ptr.alloc_id, mutability)?; ecx.tcx.interpret_interner.cache( instance.def_id(), ptr.alloc_id, ); Ok(()) } fn check_locks<'a>( mem: &Memory<'a, 'mir, 'tcx, Self>, ptr: MemoryPointer, size: u64, access: AccessKind, ) -> EvalResult<'tcx> { mem.check_locks(ptr, size, access) } fn add_lock<'a>( mem: &mut Memory<'a, 'mir, 'tcx, Self>, id: AllocId, ) { mem.data.locks.insert(id, RangeMap::new()); } fn free_lock<'a>( mem: &mut Memory<'a, 'mir, 'tcx, Self>, id: AllocId, len: u64, ) -> EvalResult<'tcx> { mem.data.locks .remove(&id) .expect("allocation has no corresponding locks") .check( Some(mem.cur_frame), 0, len, AccessKind::Read, ) .map_err(|lock| { EvalErrorKind::DeallocatedLockedMemory { //ptr, FIXME ptr: MemoryPointer { alloc_id: AllocId(0), offset: 0, }, lock: lock.active, }.into() }) } fn end_region<'a>( ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>, reg: Option<::rustc::middle::region::Scope>, ) -> EvalResult<'tcx> { ecx.end_region(reg) } fn validation_op<'a>( ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>, op: ::rustc::mir::ValidationOp, operand: &::rustc::mir::ValidationOperand<'tcx, ::rustc::mir::Place<'tcx>>, ) -> EvalResult<'tcx> { ecx.validation_op(op, operand) } }