// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Code that is useful in various trans modules. use core::prelude::*; use core::iterator::IteratorUtil; use back::{abi, upcall}; use driver::session; use driver::session::Session; use lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef, BuilderRef}; use lib::llvm::{ContextRef, True, False, Bool}; use lib::llvm::{llvm, TargetData, TypeNames, associate_type, name_has_type}; use lib; use metadata::common::LinkMeta; use middle::astencode; use middle::resolve; use middle::trans::adt; use middle::trans::base; use middle::trans::build; use middle::trans::datum; use middle::trans::debuginfo; use middle::trans::glue; use middle::trans::reachable; use middle::trans::shape; use middle::trans::type_of; use middle::trans::type_use; use middle::trans::write_guard; use middle::ty::substs; use middle::ty; use middle::typeck; use middle::borrowck::root_map_key; use util::ppaux::{Repr}; use core::cast::transmute; use core::cast; use core::hash; use core::hashmap::{HashMap, HashSet}; use core::libc::{c_uint, c_longlong, c_ulonglong}; use core::str; use core::to_bytes; use core::vec::raw::to_ptr; use core::vec; use syntax::ast::ident; use syntax::ast_map::{path, path_elt}; use syntax::codemap::span; use syntax::parse::token; use syntax::{ast, ast_map}; use syntax::abi::{X86, X86_64, Arm, Mips}; // NOTE: this thunk is totally pointless now that we're not passing // interners around... pub type namegen = @fn(s: &str) -> ident; pub fn new_namegen() -> namegen { let f: @fn(s: &str) -> ident = |prefix| { token::str_to_ident(fmt!("%s_%u", prefix, token::gensym(prefix))) }; f } pub type addrspace = c_uint; // Address spaces communicate to LLVM which destructors need to run for // specific types. // 0 is ignored by the GC, and is used for all non-GC'd pointers. // 1 is for opaque GC'd boxes. // >= 2 are for specific types (e.g. resources). pub static default_addrspace: addrspace = 0; pub static gc_box_addrspace: addrspace = 1; pub type addrspace_gen = @fn() -> addrspace; pub fn new_addrspace_gen() -> addrspace_gen { let i = @mut 1; let result: addrspace_gen = || { *i += 1; *i }; result } pub struct tydesc_info { ty: ty::t, tydesc: ValueRef, size: ValueRef, align: ValueRef, addrspace: addrspace, take_glue: Option, drop_glue: Option, free_glue: Option, visit_glue: Option } /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ pub struct Stats { n_static_tydescs: uint, n_glues_created: uint, n_null_glues: uint, n_real_glues: uint, n_fns: uint, n_monos: uint, n_inlines: uint, n_closures: uint, llvm_insn_ctxt: @mut ~[~str], llvm_insns: @mut HashMap<~str, uint>, fn_times: @mut ~[(~str, int)] // (ident, time) } pub struct BuilderRef_res { B: BuilderRef, } impl Drop for BuilderRef_res { fn finalize(&self) { unsafe { llvm::LLVMDisposeBuilder(self.B); } } } pub fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res { BuilderRef_res { B: B } } pub type ExternMap = @mut HashMap<@str, ValueRef>; // Crate context. Every crate we compile has one of these. pub struct CrateContext { sess: session::Session, llmod: ModuleRef, llcx: ContextRef, td: TargetData, tn: @TypeNames, externs: ExternMap, intrinsics: HashMap<~str, ValueRef>, item_vals: @mut HashMap, exp_map2: resolve::ExportMap2, reachable: reachable::map, item_symbols: @mut HashMap, link_meta: LinkMeta, enum_sizes: @mut HashMap, discrims: @mut HashMap, discrim_symbols: @mut HashMap, tydescs: @mut HashMap, // Set when running emit_tydescs to enforce that no more tydescs are // created. finished_tydescs: @mut bool, // Track mapping of external ids to local items imported for inlining external: @mut HashMap>, // Cache instances of monomorphized functions monomorphized: @mut HashMap, monomorphizing: @mut HashMap, // Cache computed type parameter uses (see type_use.rs) type_use_cache: @mut HashMap, // Cache generated vtables vtables: @mut HashMap, // Cache of constant strings, const_cstr_cache: @mut HashMap<@~str, ValueRef>, // Reverse-direction for const ptrs cast from globals. // Key is an int, cast from a ValueRef holding a *T, // Val is a ValueRef holding a *[T]. // // Needed because LLVM loses pointer->pointee association // when we ptrcast, and we have to ptrcast during translation // of a [T] const because we form a slice, a [*T,int] pair, not // a pointer to an LLVM array type. const_globals: @mut HashMap, // Cache of emitted const values const_values: @mut HashMap, // Cache of external const values extern_const_values: @mut HashMap, module_data: @mut HashMap<~str, ValueRef>, lltypes: @mut HashMap, llsizingtypes: @mut HashMap, adt_reprs: @mut HashMap, names: namegen, next_addrspace: addrspace_gen, symbol_hasher: @mut hash::State, type_hashcodes: @mut HashMap, type_short_names: @mut HashMap, all_llvm_symbols: @mut HashSet<@~str>, tcx: ty::ctxt, maps: astencode::Maps, stats: @mut Stats, upcalls: @upcall::Upcalls, tydesc_type: TypeRef, int_type: TypeRef, float_type: TypeRef, opaque_vec_type: TypeRef, builder: BuilderRef_res, shape_cx: shape::Ctxt, crate_map: ValueRef, // Set when at least one function uses GC. Needed so that // decl_gc_metadata knows whether to link to the module metadata, which // is not emitted by LLVM's GC pass when no functions use GC. uses_gc: @mut bool, dbg_cx: Option, do_not_commit_warning_issued: @mut bool } // Types used for llself. pub struct ValSelfData { v: ValueRef, t: ty::t, is_owned: bool } // Here `self_ty` is the real type of the self parameter to this method. It // will only be set in the case of default methods. pub struct param_substs { tys: ~[ty::t], vtables: Option, type_param_defs: @~[ty::TypeParameterDef], self_ty: Option } impl param_substs { pub fn validate(&self) { for self.tys.each |t| { assert!(!ty::type_needs_infer(*t)); } for self.self_ty.iter().advance |t| { assert!(!ty::type_needs_infer(*t)); } } } fn param_substs_to_str(this: ¶m_substs, tcx: ty::ctxt) -> ~str { fmt!("param_substs {tys:%s, vtables:%s, type_param_defs:%s}", this.tys.repr(tcx), this.vtables.repr(tcx), this.type_param_defs.repr(tcx)) } impl Repr for param_substs { fn repr(&self, tcx: ty::ctxt) -> ~str { param_substs_to_str(self, tcx) } } impl Repr for @param_substs { fn repr(&self, tcx: ty::ctxt) -> ~str { param_substs_to_str(*self, tcx) } } // Function context. Every LLVM function we create will have one of // these. pub struct fn_ctxt_ { // The ValueRef returned from a call to llvm::LLVMAddFunction; the // address of the first instruction in the sequence of // instructions for this function that will go in the .text // section of the executable we're generating. llfn: ValueRef, // The implicit environment argument that arrives in the function we're // creating. llenv: ValueRef, // The place to store the return value. If the return type is immediate, // this is an alloca in the function. Otherwise, it's the hidden first // parameter to the function. After function construction, this should // always be Some. llretptr: Option, // These elements: "hoisted basic blocks" containing // administrative activities that have to happen in only one place in // the function, due to LLVM's quirks. // A block for all the function's static allocas, so that LLVM // will coalesce them into a single alloca call. llstaticallocas: BasicBlockRef, // A block containing code that copies incoming arguments to space // already allocated by code in one of the llallocas blocks. // (LLVM requires that arguments be copied to local allocas before // allowing most any operation to be performed on them.) llloadenv: Option, llreturn: BasicBlockRef, // The 'self' value currently in use in this function, if there // is one. // // NB: This is the type of the self *variable*, not the self *type*. The // self type is set only for default methods, while the self variable is // set for all methods. llself: Option, // The a value alloca'd for calls to upcalls.rust_personality. Used when // outputting the resume instruction. personality: Option, // If this is a for-loop body that returns, this holds the pointers needed // for that (flagptr, retptr) loop_ret: Option<(ValueRef, ValueRef)>, // True if this function has an immediate return value, false otherwise. // If this is false, the llretptr will alias the first argument of the // function. has_immediate_return_value: bool, // Maps arguments to allocas created for them in llallocas. llargs: @mut HashMap, // Maps the def_ids for local variables to the allocas created for // them in llallocas. lllocals: @mut HashMap, // Same as above, but for closure upvars llupvars: @mut HashMap, // The node_id of the function, or -1 if it doesn't correspond to // a user-defined function. id: ast::node_id, // The def_id of the impl we're inside, or None if we aren't inside one. impl_id: Option, // If this function is being monomorphized, this contains the type // substitutions used. param_substs: Option<@param_substs>, // The source span and nesting context where this function comes from, for // error reporting and symbol generation. span: Option, path: path, // This function's enclosing crate context. ccx: @@CrateContext } impl fn_ctxt_ { pub fn arg_pos(&self, arg: uint) -> uint { if self.has_immediate_return_value { arg + 1u } else { arg + 2u } } pub fn out_arg_pos(&self) -> uint { assert!(self.has_immediate_return_value); 0u } pub fn env_arg_pos(&self) -> uint { if !self.has_immediate_return_value { 1u } else { 0u } } } pub type fn_ctxt = @mut fn_ctxt_; pub fn warn_not_to_commit(ccx: @CrateContext, msg: &str) { if !*ccx.do_not_commit_warning_issued { *ccx.do_not_commit_warning_issued = true; ccx.sess.warn(msg.to_str() + " -- do not commit like this!"); } } // Heap selectors. Indicate which heap something should go on. #[deriving(Eq)] pub enum heap { heap_managed, heap_managed_unique, heap_exchange, } #[deriving(Eq)] pub enum cleantype { normal_exit_only, normal_exit_and_unwind } pub enum cleanup { clean(@fn(block) -> block, cleantype), clean_temp(ValueRef, @fn(block) -> block, cleantype), } // Used to remember and reuse existing cleanup paths // target: none means the path ends in an resume instruction pub struct cleanup_path { target: Option, dest: BasicBlockRef } pub fn scope_clean_changed(scope_info: &mut scope_info) { if scope_info.cleanup_paths.len() > 0u { scope_info.cleanup_paths = ~[]; } scope_info.landing_pad = None; } pub fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype { if ty::type_needs_unwind_cleanup(cx, ty) { normal_exit_and_unwind } else { normal_exit_only } } // This is not the same as datum::Datum::root(), which is used to keep copies // of @ values live for as long as a borrowed pointer to the interior exists. // In the new GC, we can identify immediates on the stack without difficulty, // but have trouble knowing where non-immediates are on the stack. For // non-immediates, we must add an additional level of indirection, which // allows us to alloca a pointer with the right addrspace. pub fn root_for_cleanup(bcx: block, v: ValueRef, t: ty::t) -> (ValueRef, bool) { let ccx = bcx.ccx(); let addrspace = base::get_tydesc(ccx, t).addrspace; if addrspace > gc_box_addrspace { let llty = type_of::type_of_rooted(ccx, t); let root = base::alloca(bcx, llty); build::Store(bcx, build::PointerCast(bcx, v, llty), root); (root, true) } else { (v, false) } } pub fn add_clean(bcx: block, val: ValueRef, t: ty::t) { if !ty::type_needs_drop(bcx.tcx(), t) { return; } debug!("add_clean(%s, %s, %s)", bcx.to_str(), val_str(bcx.ccx().tn, val), t.repr(bcx.tcx())); let (root, rooted) = root_for_cleanup(bcx, val, t); let cleanup_type = cleanup_type(bcx.tcx(), t); do in_scope_cx(bcx) |scope_info| { scope_info.cleanups.push( clean(|a| glue::drop_ty_root(a, root, rooted, t), cleanup_type)); scope_clean_changed(scope_info); } } pub fn add_clean_temp_immediate(cx: block, val: ValueRef, ty: ty::t) { if !ty::type_needs_drop(cx.tcx(), ty) { return; } debug!("add_clean_temp_immediate(%s, %s, %s)", cx.to_str(), val_str(cx.ccx().tn, val), ty.repr(cx.tcx())); let cleanup_type = cleanup_type(cx.tcx(), ty); do in_scope_cx(cx) |scope_info| { scope_info.cleanups.push( clean_temp(val, |a| glue::drop_ty_immediate(a, val, ty), cleanup_type)); scope_clean_changed(scope_info); } } pub fn add_clean_temp_mem(bcx: block, val: ValueRef, t: ty::t) { if !ty::type_needs_drop(bcx.tcx(), t) { return; } debug!("add_clean_temp_mem(%s, %s, %s)", bcx.to_str(), val_str(bcx.ccx().tn, val), t.repr(bcx.tcx())); let (root, rooted) = root_for_cleanup(bcx, val, t); let cleanup_type = cleanup_type(bcx.tcx(), t); do in_scope_cx(bcx) |scope_info| { scope_info.cleanups.push( clean_temp(val, |a| glue::drop_ty_root(a, root, rooted, t), cleanup_type)); scope_clean_changed(scope_info); } } pub fn add_clean_return_to_mut(bcx: block, root_key: root_map_key, frozen_val_ref: ValueRef, bits_val_ref: ValueRef, filename_val: ValueRef, line_val: ValueRef) { //! When an `@mut` has been frozen, we have to //! call the lang-item `return_to_mut` when the //! freeze goes out of scope. We need to pass //! in both the value which was frozen (`frozen_val`) and //! the value (`bits_val_ref`) which was returned when the //! box was frozen initially. Here, both `frozen_val_ref` and //! `bits_val_ref` are in fact pointers to stack slots. debug!("add_clean_return_to_mut(%s, %s, %s)", bcx.to_str(), val_str(bcx.ccx().tn, frozen_val_ref), val_str(bcx.ccx().tn, bits_val_ref)); do in_scope_cx(bcx) |scope_info| { scope_info.cleanups.push( clean_temp( frozen_val_ref, |bcx| write_guard::return_to_mut(bcx, root_key, frozen_val_ref, bits_val_ref, filename_val, line_val), normal_exit_only)); scope_clean_changed(scope_info); } } pub fn add_clean_free(cx: block, ptr: ValueRef, heap: heap) { let free_fn = match heap { heap_managed | heap_managed_unique => { let f: @fn(block) -> block = |a| glue::trans_free(a, ptr); f } heap_exchange => { let f: @fn(block) -> block = |a| glue::trans_exchange_free(a, ptr); f } }; do in_scope_cx(cx) |scope_info| { scope_info.cleanups.push(clean_temp(ptr, free_fn, normal_exit_and_unwind)); scope_clean_changed(scope_info); } } // Note that this only works for temporaries. We should, at some point, move // to a system where we can also cancel the cleanup on local variables, but // this will be more involved. For now, we simply zero out the local, and the // drop glue checks whether it is zero. pub fn revoke_clean(cx: block, val: ValueRef) { do in_scope_cx(cx) |scope_info| { let scope_info = &mut *scope_info; // FIXME(#5074) workaround borrowck let cleanup_pos = vec::position( scope_info.cleanups, |cu| match *cu { clean_temp(v, _, _) if v == val => true, _ => false }); for cleanup_pos.iter().advance |i| { scope_info.cleanups = vec::append(vec::slice(scope_info.cleanups, 0u, *i).to_vec(), vec::slice(scope_info.cleanups, *i + 1u, scope_info.cleanups.len())); scope_clean_changed(scope_info); } } } pub fn block_cleanups(bcx: block) -> ~[cleanup] { match bcx.kind { block_non_scope => ~[], block_scope(inf) => /*bad*/copy inf.cleanups } } pub enum block_kind { // A scope at the end of which temporary values created inside of it are // cleaned up. May correspond to an actual block in the language, but also // to an implicit scope, for example, calls introduce an implicit scope in // which the arguments are evaluated and cleaned up. block_scope(@mut scope_info), // A non-scope block is a basic block created as a translation artifact // from translating code that expresses conditional logic rather than by // explicit { ... } block structure in the source language. It's called a // non-scope block because it doesn't introduce a new variable scope. block_non_scope, } pub struct scope_info { loop_break: Option, loop_label: Option, // A list of functions that must be run at when leaving this // block, cleaning up any variables that were introduced in the // block. cleanups: ~[cleanup], // Existing cleanup paths that may be reused, indexed by destination and // cleared when the set of cleanups changes. cleanup_paths: ~[cleanup_path], // Unwinding landing pad. Also cleared when cleanups change. landing_pad: Option, } impl scope_info { pub fn empty_cleanups(&mut self) -> bool { self.cleanups.is_empty() } } pub trait get_node_info { fn info(&self) -> Option; } impl get_node_info for @ast::expr { fn info(&self) -> Option { Some(NodeInfo {id: self.id, callee_id: self.get_callee_id(), span: self.span}) } } impl get_node_info for ast::blk { fn info(&self) -> Option { Some(NodeInfo {id: self.node.id, callee_id: None, span: self.span}) } } impl get_node_info for Option<@ast::expr> { fn info(&self) -> Option { self.chain_ref(|s| s.info()) } } pub struct NodeInfo { id: ast::node_id, callee_id: Option, span: span } // Basic block context. We create a block context for each basic block // (single-entry, single-exit sequence of instructions) we generate from Rust // code. Each basic block we generate is attached to a function, typically // with many basic blocks per function. All the basic blocks attached to a // function are organized as a directed graph. pub struct block_ { // The BasicBlockRef returned from a call to // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic // block to the function pointed to by llfn. We insert // instructions into that block by way of this block context. // The block pointing to this one in the function's digraph. llbb: BasicBlockRef, terminated: bool, unreachable: bool, parent: Option, // The 'kind' of basic block this is. kind: block_kind, // Is this block part of a landing pad? is_lpad: bool, // info about the AST node this block originated from, if any node_info: Option, // The function context for the function to which this block is // attached. fcx: fn_ctxt } pub fn block_(llbb: BasicBlockRef, parent: Option, kind: block_kind, is_lpad: bool, node_info: Option, fcx: fn_ctxt) -> block_ { block_ { llbb: llbb, terminated: false, unreachable: false, parent: parent, kind: kind, is_lpad: is_lpad, node_info: node_info, fcx: fcx } } pub type block = @mut block_; pub fn mk_block(llbb: BasicBlockRef, parent: Option, kind: block_kind, is_lpad: bool, node_info: Option, fcx: fn_ctxt) -> block { @mut block_(llbb, parent, kind, is_lpad, node_info, fcx) } pub struct Result { bcx: block, val: ValueRef } pub fn rslt(bcx: block, val: ValueRef) -> Result { Result {bcx: bcx, val: val} } impl Result { pub fn unpack(&self, bcx: &mut block) -> ValueRef { *bcx = self.bcx; return self.val; } } pub fn ty_str(tn: @TypeNames, t: TypeRef) -> @str { return lib::llvm::type_to_str(tn, t); } pub fn val_ty(v: ValueRef) -> TypeRef { unsafe { return llvm::LLVMTypeOf(v); } } pub fn val_str(tn: @TypeNames, v: ValueRef) -> @str { return ty_str(tn, val_ty(v)); } pub fn in_scope_cx(cx: block, f: &fn(si: @mut scope_info)) { let mut cur = cx; loop { match cur.kind { block_scope(inf) => { debug!("in_scope_cx: selected cur=%s (cx=%s)", cur.to_str(), cx.to_str()); f(inf); return; } _ => () } cur = block_parent(cur); } } pub fn block_parent(cx: block) -> block { match cx.parent { Some(b) => b, None => cx.sess().bug(fmt!("block_parent called on root block %?", cx)) } } // Accessors impl block_ { pub fn ccx(@mut self) -> @CrateContext { *self.fcx.ccx } pub fn tcx(@mut self) -> ty::ctxt { self.fcx.ccx.tcx } pub fn sess(@mut self) -> Session { self.fcx.ccx.sess } pub fn node_id_to_str(@mut self, id: ast::node_id) -> ~str { ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr()) } pub fn expr_to_str(@mut self, e: @ast::expr) -> ~str { e.repr(self.tcx()) } pub fn expr_is_lval(@mut self, e: @ast::expr) -> bool { ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e) } pub fn expr_kind(@mut self, e: @ast::expr) -> ty::ExprKind { ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e) } pub fn def(@mut self, nid: ast::node_id) -> ast::def { match self.tcx().def_map.find(&nid) { Some(&v) => v, None => { self.tcx().sess.bug(fmt!( "No def associated with node id %?", nid)); } } } pub fn val_str(@mut self, val: ValueRef) -> @str { val_str(self.ccx().tn, val) } pub fn llty_str(@mut self, llty: TypeRef) -> @str { ty_str(self.ccx().tn, llty) } pub fn ty_to_str(@mut self, t: ty::t) -> ~str { t.repr(self.tcx()) } pub fn to_str(@mut self) -> ~str { unsafe { match self.node_info { Some(node_info) => fmt!("[block %d]", node_info.id), None => fmt!("[block %x]", transmute(&*self)), } } } } // LLVM type constructors. pub fn T_void() -> TypeRef { unsafe { return llvm::LLVMVoidTypeInContext(base::task_llcx()); } } pub fn T_nil() -> TypeRef { return T_struct([], false) } pub fn T_metadata() -> TypeRef { unsafe { return llvm::LLVMMetadataTypeInContext(base::task_llcx()); } } pub fn T_i1() -> TypeRef { unsafe { return llvm::LLVMInt1TypeInContext(base::task_llcx()); } } pub fn T_i8() -> TypeRef { unsafe { return llvm::LLVMInt8TypeInContext(base::task_llcx()); } } pub fn T_i16() -> TypeRef { unsafe { return llvm::LLVMInt16TypeInContext(base::task_llcx()); } } pub fn T_i32() -> TypeRef { unsafe { return llvm::LLVMInt32TypeInContext(base::task_llcx()); } } pub fn T_i64() -> TypeRef { unsafe { return llvm::LLVMInt64TypeInContext(base::task_llcx()); } } pub fn T_f32() -> TypeRef { unsafe { return llvm::LLVMFloatTypeInContext(base::task_llcx()); } } pub fn T_f64() -> TypeRef { unsafe { return llvm::LLVMDoubleTypeInContext(base::task_llcx()); } } pub fn T_bool() -> TypeRef { return T_i8(); } pub fn T_int(targ_cfg: @session::config) -> TypeRef { return match targ_cfg.arch { X86 => T_i32(), X86_64 => T_i64(), Arm => T_i32(), Mips => T_i32() }; } pub fn T_int_ty(cx: @CrateContext, t: ast::int_ty) -> TypeRef { match t { ast::ty_i => cx.int_type, ast::ty_char => T_char(), ast::ty_i8 => T_i8(), ast::ty_i16 => T_i16(), ast::ty_i32 => T_i32(), ast::ty_i64 => T_i64() } } pub fn T_uint_ty(cx: @CrateContext, t: ast::uint_ty) -> TypeRef { match t { ast::ty_u => cx.int_type, ast::ty_u8 => T_i8(), ast::ty_u16 => T_i16(), ast::ty_u32 => T_i32(), ast::ty_u64 => T_i64() } } pub fn T_float_ty(cx: @CrateContext, t: ast::float_ty) -> TypeRef { match t { ast::ty_f => cx.float_type, ast::ty_f32 => T_f32(), ast::ty_f64 => T_f64() } } pub fn T_float(targ_cfg: @session::config) -> TypeRef { return match targ_cfg.arch { X86 => T_f64(), X86_64 => T_f64(), Arm => T_f64(), Mips => T_f64() }; } pub fn T_char() -> TypeRef { return T_i32(); } pub fn T_size_t(targ_cfg: @session::config) -> TypeRef { return T_int(targ_cfg); } pub fn T_fn(inputs: &[TypeRef], output: TypeRef) -> TypeRef { unsafe { return llvm::LLVMFunctionType(output, to_ptr(inputs), inputs.len() as c_uint, False); } } pub fn T_fn_pair(cx: @CrateContext, tfn: TypeRef) -> TypeRef { return T_struct([T_ptr(tfn), T_opaque_cbox_ptr(cx)], false); } pub fn T_ptr(t: TypeRef) -> TypeRef { unsafe { return llvm::LLVMPointerType(t, default_addrspace); } } pub fn T_root(t: TypeRef, addrspace: addrspace) -> TypeRef { unsafe { return llvm::LLVMPointerType(t, addrspace); } } pub fn T_struct(elts: &[TypeRef], packed: bool) -> TypeRef { unsafe { return llvm::LLVMStructTypeInContext(base::task_llcx(), to_ptr(elts), elts.len() as c_uint, packed as Bool); } } pub fn T_named_struct(name: &str) -> TypeRef { unsafe { return str::as_c_str(name, |buf| { llvm::LLVMStructCreateNamed(base::task_llcx(), buf) }); } } pub fn set_struct_body(t: TypeRef, elts: &[TypeRef], packed: bool) { unsafe { llvm::LLVMStructSetBody(t, to_ptr(elts), elts.len() as c_uint, packed as Bool); } } pub fn T_empty_struct() -> TypeRef { return T_struct([], false); } // A vtable is, in reality, a vtable pointer followed by zero or more pointers // to tydescs and other vtables that it closes over. But the types and number // of those are rarely known to the code that needs to manipulate them, so // they are described by this opaque type. pub fn T_vtable() -> TypeRef { T_array(T_ptr(T_i8()), 1u) } pub fn T_tydesc_field(cx: @CrateContext, field: uint) -> TypeRef { // Bit of a kludge: pick the fn typeref out of the tydesc.. unsafe { let mut tydesc_elts: ~[TypeRef] = vec::from_elem::(abi::n_tydesc_fields, T_nil()); llvm::LLVMGetStructElementTypes(cx.tydesc_type, &mut tydesc_elts[0]); let t = llvm::LLVMGetElementType(tydesc_elts[field]); return t; } } pub fn T_generic_glue_fn(cx: @CrateContext) -> TypeRef { let s = @"glue_fn"; match name_has_type(cx.tn, s) { Some(t) => return t, _ => () } let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue); associate_type(cx.tn, s, t); return t; } pub fn T_tydesc(targ_cfg: @session::config) -> TypeRef { let tydesc = T_named_struct("tydesc"); let tydescpp = T_ptr(T_ptr(tydesc)); let pvoid = T_ptr(T_i8()); let glue_fn_ty = T_ptr(T_fn([T_ptr(T_nil()), tydescpp, pvoid], T_void())); let int_type = T_int(targ_cfg); let elems = ~[int_type, int_type, glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty, T_ptr(T_i8()), T_ptr(T_i8())]; set_struct_body(tydesc, elems, false); return tydesc; } pub fn T_array(t: TypeRef, n: uint) -> TypeRef { unsafe { return llvm::LLVMArrayType(t, n as c_uint); } } pub fn T_vector(t: TypeRef, n: uint) -> TypeRef { unsafe { return llvm::LLVMVectorType(t, n as c_uint); } } // Interior vector. pub fn T_vec2(targ_cfg: @session::config, t: TypeRef) -> TypeRef { return T_struct([T_int(targ_cfg), // fill T_int(targ_cfg), // alloc T_array(t, 0u)], // elements false); } pub fn T_vec(ccx: @CrateContext, t: TypeRef) -> TypeRef { return T_vec2(ccx.sess.targ_cfg, t); } // Note that the size of this one is in bytes. pub fn T_opaque_vec(targ_cfg: @session::config) -> TypeRef { return T_vec2(targ_cfg, T_i8()); } // Let T be the content of a box @T. tuplify_box_ty(t) returns the // representation of @T as a tuple (i.e., the ty::t version of what T_box() // returns). pub fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let ptr = ty::mk_ptr( tcx, ty::mt {ty: ty::mk_nil(), mutbl: ast::m_imm} ); return ty::mk_tup(tcx, ~[ty::mk_uint(), ty::mk_type(tcx), ptr, ptr, t]); } pub fn T_box_header_fields(cx: @CrateContext) -> ~[TypeRef] { let ptr = T_ptr(T_i8()); return ~[cx.int_type, T_ptr(cx.tydesc_type), ptr, ptr]; } pub fn T_box_header(cx: @CrateContext) -> TypeRef { return T_struct(T_box_header_fields(cx), false); } pub fn T_box(cx: @CrateContext, t: TypeRef) -> TypeRef { return T_struct(vec::append(T_box_header_fields(cx), [t]), false); } pub fn T_box_ptr(t: TypeRef) -> TypeRef { unsafe { return llvm::LLVMPointerType(t, gc_box_addrspace); } } pub fn T_opaque_box(cx: @CrateContext) -> TypeRef { return T_box(cx, T_i8()); } pub fn T_opaque_box_ptr(cx: @CrateContext) -> TypeRef { return T_box_ptr(T_opaque_box(cx)); } pub fn T_unique(cx: @CrateContext, t: TypeRef) -> TypeRef { return T_struct(vec::append(T_box_header_fields(cx), [t]), false); } pub fn T_unique_ptr(t: TypeRef) -> TypeRef { unsafe { return llvm::LLVMPointerType(t, gc_box_addrspace); } } pub fn T_port(cx: @CrateContext, _t: TypeRef) -> TypeRef { return T_struct([cx.int_type], false); // Refcount } pub fn T_chan(cx: @CrateContext, _t: TypeRef) -> TypeRef { return T_struct([cx.int_type], false); // Refcount } pub fn T_opaque_cbox_ptr(cx: @CrateContext) -> TypeRef { // closures look like boxes (even when they are ~fn or &fn) // see trans_closure.rs return T_opaque_box_ptr(cx); } pub fn T_enum_discrim(cx: @CrateContext) -> TypeRef { return cx.int_type; } pub fn T_captured_tydescs(cx: @CrateContext, n: uint) -> TypeRef { return T_struct(vec::from_elem::(n, T_ptr(cx.tydesc_type)), false); } pub fn T_opaque_trait(cx: @CrateContext, store: ty::TraitStore) -> TypeRef { match store { ty::BoxTraitStore => { T_struct([T_ptr(cx.tydesc_type), T_opaque_box_ptr(cx)], false) } ty::UniqTraitStore => { T_struct([T_ptr(cx.tydesc_type), T_unique_ptr(T_unique(cx, T_i8()))], false) } ty::RegionTraitStore(_) => { T_struct([T_ptr(cx.tydesc_type), T_ptr(T_i8())], false) } } } pub fn T_opaque_port_ptr() -> TypeRef { return T_ptr(T_i8()); } pub fn T_opaque_chan_ptr() -> TypeRef { return T_ptr(T_i8()); } // LLVM constant constructors. pub fn C_null(t: TypeRef) -> ValueRef { unsafe { return llvm::LLVMConstNull(t); } } pub fn C_undef(t: TypeRef) -> ValueRef { unsafe { return llvm::LLVMGetUndef(t); } } pub fn C_integral(t: TypeRef, u: u64, sign_extend: Bool) -> ValueRef { unsafe { return llvm::LLVMConstInt(t, u, sign_extend); } } pub fn C_floating(s: &str, t: TypeRef) -> ValueRef { unsafe { return str::as_c_str(s, |buf| llvm::LLVMConstRealOfString(t, buf)); } } pub fn C_nil() -> ValueRef { return C_struct([]); } pub fn C_bool(b: bool) -> ValueRef { C_integral(T_bool(), if b { 1u64 } else { 0u64 }, False) } pub fn C_i1(b: bool) -> ValueRef { return C_integral(T_i1(), if b { 1 } else { 0 }, False); } pub fn C_i32(i: i32) -> ValueRef { return C_integral(T_i32(), i as u64, True); } pub fn C_i64(i: i64) -> ValueRef { return C_integral(T_i64(), i as u64, True); } pub fn C_int(cx: @CrateContext, i: int) -> ValueRef { return C_integral(cx.int_type, i as u64, True); } pub fn C_uint(cx: @CrateContext, i: uint) -> ValueRef { return C_integral(cx.int_type, i as u64, False); } pub fn C_u8(i: uint) -> ValueRef { return C_integral(T_i8(), i as u64, False); } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. pub fn C_cstr(cx: @CrateContext, s: @~str) -> ValueRef { unsafe { match cx.const_cstr_cache.find(&s) { Some(&llval) => return llval, None => () } let sc = do str::as_c_str(*s) |buf| { llvm::LLVMConstStringInContext(cx.llcx, buf, s.len() as c_uint, False) }; let g = str::as_c_str(fmt!("str%u", (cx.names)("str").name), |buf| llvm::LLVMAddGlobal(cx.llmod, val_ty(sc), buf)); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage); cx.const_cstr_cache.insert(s, g); return g; } } // NB: Do not use `do_spill_noroot` to make this into a constant string, or // you will be kicked off fast isel. See issue #4352 for an example of this. pub fn C_estr_slice(cx: @CrateContext, s: @~str) -> ValueRef { unsafe { let len = s.len(); let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), T_ptr(T_i8())); C_struct([cs, C_uint(cx, len + 1u /* +1 for null */)]) } } // Returns a Plain Old LLVM String: pub fn C_postr(s: &str) -> ValueRef { unsafe { return do str::as_c_str(s) |buf| { llvm::LLVMConstStringInContext(base::task_llcx(), buf, s.len() as c_uint, False) }; } } pub fn C_zero_byte_arr(size: uint) -> ValueRef { unsafe { let mut i = 0u; let mut elts: ~[ValueRef] = ~[]; while i < size { elts.push(C_u8(0u)); i += 1u; } return llvm::LLVMConstArray(T_i8(), vec::raw::to_ptr(elts), elts.len() as c_uint); } } pub fn C_struct(elts: &[ValueRef]) -> ValueRef { unsafe { do vec::as_imm_buf(elts) |ptr, len| { llvm::LLVMConstStructInContext(base::task_llcx(), ptr, len as c_uint, False) } } } pub fn C_packed_struct(elts: &[ValueRef]) -> ValueRef { unsafe { do vec::as_imm_buf(elts) |ptr, len| { llvm::LLVMConstStructInContext(base::task_llcx(), ptr, len as c_uint, True) } } } pub fn C_named_struct(T: TypeRef, elts: &[ValueRef]) -> ValueRef { unsafe { do vec::as_imm_buf(elts) |ptr, len| { llvm::LLVMConstNamedStruct(T, ptr, len as c_uint) } } } pub fn C_array(ty: TypeRef, elts: &[ValueRef]) -> ValueRef { unsafe { return llvm::LLVMConstArray(ty, vec::raw::to_ptr(elts), elts.len() as c_uint); } } pub fn C_bytes(bytes: &[u8]) -> ValueRef { unsafe { return llvm::LLVMConstStringInContext(base::task_llcx(), cast::transmute(vec::raw::to_ptr(bytes)), bytes.len() as c_uint, True); } } pub fn C_bytes_plus_null(bytes: &[u8]) -> ValueRef { unsafe { return llvm::LLVMConstStringInContext(base::task_llcx(), cast::transmute(vec::raw::to_ptr(bytes)), bytes.len() as c_uint, False); } } pub fn C_shape(ccx: @CrateContext, bytes: ~[u8]) -> ValueRef { unsafe { let llshape = C_bytes_plus_null(bytes); let name = fmt!("shape%u", (ccx.names)("shape").name); let llglobal = str::as_c_str(name, |buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(llshape), buf) }); llvm::LLVMSetInitializer(llglobal, llshape); llvm::LLVMSetGlobalConstant(llglobal, True); lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage); return llvm::LLVMConstPointerCast(llglobal, T_ptr(T_i8())); } } pub fn get_param(fndecl: ValueRef, param: uint) -> ValueRef { unsafe { llvm::LLVMGetParam(fndecl, param as c_uint) } } pub fn const_get_elt(cx: @CrateContext, v: ValueRef, us: &[c_uint]) -> ValueRef { unsafe { let r = do vec::as_imm_buf(us) |p, len| { llvm::LLVMConstExtractValue(v, p, len as c_uint) }; debug!("const_get_elt(v=%s, us=%?, r=%s)", val_str(cx.tn, v), us, val_str(cx.tn, r)); return r; } } pub fn const_to_int(v: ValueRef) -> c_longlong { unsafe { llvm::LLVMConstIntGetSExtValue(v) } } pub fn const_to_uint(v: ValueRef) -> c_ulonglong { unsafe { llvm::LLVMConstIntGetZExtValue(v) } } pub fn is_undef(val: ValueRef) -> bool { unsafe { llvm::LLVMIsUndef(val) != False } } pub fn is_null(val: ValueRef) -> bool { unsafe { llvm::LLVMIsNull(val) != False } } // Used to identify cached monomorphized functions and vtables #[deriving(Eq)] pub enum mono_param_id { mono_precise(ty::t, Option<@~[mono_id]>), mono_any, mono_repr(uint /* size */, uint /* align */, MonoDataClass, datum::DatumMode), } #[deriving(Eq)] pub enum MonoDataClass { MonoBits, // Anything not treated differently from arbitrary integer data MonoNonNull, // Non-null pointers (used for optional-pointer optimization) // FIXME(#3547)---scalars and floats are // treated differently in most ABIs. But we // should be doing something more detailed // here. MonoFloat } pub fn mono_data_classify(t: ty::t) -> MonoDataClass { match ty::get(t).sty { ty::ty_float(_) => MonoFloat, ty::ty_rptr(*) | ty::ty_uniq(*) | ty::ty_box(*) | ty::ty_opaque_box(*) | ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) | ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) | ty::ty_bare_fn(*) => MonoNonNull, // Is that everything? Would closures or slices qualify? _ => MonoBits } } #[deriving(Eq)] pub struct mono_id_ { def: ast::def_id, params: ~[mono_param_id], impl_did_opt: Option } pub type mono_id = @mono_id_; impl to_bytes::IterBytes for mono_param_id { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { match *self { mono_precise(t, ref mids) => { 0u8.iter_bytes(lsb0, f) && ty::type_id(t).iter_bytes(lsb0, f) && mids.iter_bytes(lsb0, f) } mono_any => 1u8.iter_bytes(lsb0, f), mono_repr(ref a, ref b, ref c, ref d) => { 2u8.iter_bytes(lsb0, f) && a.iter_bytes(lsb0, f) && b.iter_bytes(lsb0, f) && c.iter_bytes(lsb0, f) && d.iter_bytes(lsb0, f) } } } } impl to_bytes::IterBytes for MonoDataClass { fn iter_bytes(&self, lsb0: bool, f:to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } impl to_bytes::IterBytes for mono_id_ { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { self.def.iter_bytes(lsb0, f) && self.params.iter_bytes(lsb0, f) } } pub fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); return build::Select(cx, cond, b, a); } pub fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); return build::Select(cx, cond, a, b); } pub fn align_to(cx: block, off: ValueRef, align: ValueRef) -> ValueRef { let mask = build::Sub(cx, align, C_int(cx.ccx(), 1)); let bumped = build::Add(cx, off, mask); return build::And(cx, bumped, build::Not(cx, mask)); } pub fn path_str(sess: session::Session, p: &[path_elt]) -> ~str { let mut r = ~""; let mut first = true; for p.each |e| { match *e { ast_map::path_name(s) | ast_map::path_mod(s) => { if first { first = false; } else { r += "::"; } r += *sess.str_of(s); } } } r } pub fn monomorphize_type(bcx: block, t: ty::t) -> ty::t { match bcx.fcx.param_substs { Some(substs) => { ty::subst_tps(bcx.tcx(), substs.tys, substs.self_ty, t) } _ => { assert!(!ty::type_has_params(t)); t } } } pub fn node_id_type(bcx: block, id: ast::node_id) -> ty::t { let tcx = bcx.tcx(); let t = ty::node_id_to_type(tcx, id); monomorphize_type(bcx, t) } pub fn expr_ty(bcx: block, ex: @ast::expr) -> ty::t { node_id_type(bcx, ex.id) } pub fn expr_ty_adjusted(bcx: block, ex: @ast::expr) -> ty::t { let tcx = bcx.tcx(); let t = ty::expr_ty_adjusted(tcx, ex); monomorphize_type(bcx, t) } pub fn node_id_type_params(bcx: block, id: ast::node_id) -> ~[ty::t] { let tcx = bcx.tcx(); let params = ty::node_id_to_type_params(tcx, id); if !params.all(|t| !ty::type_needs_infer(*t)) { bcx.sess().bug( fmt!("Type parameters for node %d include inference types: %s", id, params.map(|t| bcx.ty_to_str(*t)).connect(","))); } match bcx.fcx.param_substs { Some(substs) => { do vec::map(params) |t| { ty::subst_tps(tcx, substs.tys, substs.self_ty, *t) } } _ => params } } pub fn node_vtables(bcx: block, id: ast::node_id) -> Option { let raw_vtables = bcx.ccx().maps.vtable_map.find(&id); raw_vtables.map( |&vts| resolve_vtables_in_fn_ctxt(bcx.fcx, *vts)) } pub fn resolve_vtables_in_fn_ctxt(fcx: fn_ctxt, vts: typeck::vtable_res) -> typeck::vtable_res { @vec::map(*vts, |d| resolve_vtable_in_fn_ctxt(fcx, copy *d)) } // Apply the typaram substitutions in the fn_ctxt to a vtable. This should // eliminate any vtable_params. pub fn resolve_vtable_in_fn_ctxt(fcx: fn_ctxt, vt: typeck::vtable_origin) -> typeck::vtable_origin { let tcx = fcx.ccx.tcx; match vt { typeck::vtable_static(trait_id, tys, sub) => { let tys = match fcx.param_substs { Some(substs) => { do vec::map(tys) |t| { ty::subst_tps(tcx, substs.tys, substs.self_ty, *t) } } _ => tys }; typeck::vtable_static(trait_id, tys, resolve_vtables_in_fn_ctxt(fcx, sub)) } typeck::vtable_param(n_param, n_bound) => { match fcx.param_substs { Some(substs) => { find_vtable(tcx, substs, n_param, n_bound) } _ => { tcx.sess.bug(fmt!( "resolve_vtable_in_fn_ctxt: asked to lookup but \ no vtables in the fn_ctxt!")) } } } } } pub fn find_vtable(tcx: ty::ctxt, ps: ¶m_substs, n_param: uint, n_bound: uint) -> typeck::vtable_origin { debug!("find_vtable(n_param=%u, n_bound=%u, ps=%s)", n_param, n_bound, ps.repr(tcx)); // Vtables are stored in a flat array, finding the right one is // somewhat awkward let first_n_type_param_defs = ps.type_param_defs.slice(0, n_param); let vtables_to_skip = ty::count_traits_and_supertraits(tcx, first_n_type_param_defs); let vtable_off = vtables_to_skip + n_bound; /*bad*/ copy ps.vtables.get()[vtable_off] } pub fn dummy_substs(tps: ~[ty::t]) -> ty::substs { substs { self_r: Some(ty::re_bound(ty::br_self)), self_ty: None, tps: tps } } pub fn filename_and_line_num_from_span(bcx: block, span: span) -> (ValueRef, ValueRef) { let loc = bcx.sess().parse_sess.cm.lookup_char_pos(span.lo); let filename_cstr = C_cstr(bcx.ccx(), @/*bad*/copy loc.file.name); let filename = build::PointerCast(bcx, filename_cstr, T_ptr(T_i8())); let line = C_int(bcx.ccx(), loc.line as int); (filename, line) } // Casts a Rust bool value to an i1. pub fn bool_to_i1(bcx: block, llval: ValueRef) -> ValueRef { build::ICmp(bcx, lib::llvm::IntNE, llval, C_bool(false)) }