// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::prelude::*; use driver::session; use middle::ty; use middle::pat_util; use util::ppaux::{ty_to_str}; use core::char; use core::cmp; use core::hashmap::HashMap; use core::i16; use core::i32; use core::i64; use core::i8; use core::str; use core::u16; use core::u32; use core::u64; use core::u8; use core::vec; use extra::smallintmap::SmallIntMap; use syntax::attr; use syntax::codemap::span; use syntax::codemap; use syntax::{ast, visit, ast_util}; /** * A 'lint' check is a kind of miscellaneous constraint that a user _might_ * want to enforce, but might reasonably want to permit as well, on a * module-by-module basis. They contrast with static constraints enforced by * other phases of the compiler, which are generally required to hold in order * to compile the program at all. * * The lint checking is all consolidated into one pass which runs just before * translation to LLVM bytecode. Throughout compilation, lint warnings can be * added via the `add_lint` method on the Session structure. This requires a * span and an id of the node that the lint is being added to. The lint isn't * actually emitted at that time because it is unknown what the actual lint * level at that location is. * * To actually emit lint warnings/errors, a separate pass is used just before * translation. A context keeps track of the current state of all lint levels. * Upon entering a node of the ast which can modify the lint settings, the * previous lint state is pushed onto a stack and the ast is then recursed upon. * As the ast is traversed, this keeps track of the current lint level for all * lint attributes. * * At each node of the ast which can modify lint attributes, all known lint * passes are also applied. Each lint pass is a visit::vt<()> structure. These * visitors are constructed via the lint_*() functions below. There are also * some lint checks which operate directly on ast nodes (such as @ast::item), * and those are organized as check_item_*(). Each visitor added to the lint * context is modified to stop once it reaches a node which could alter the lint * levels. This means that everything is looked at once and only once by every * lint pass. * * With this all in place, to add a new lint warning, all you need to do is to * either invoke `add_lint` on the session at the appropriate time, or write a * lint pass in this module which is just an ast visitor. The context used when * traversing the ast has a `span_lint` method which only needs the span of the * item that's being warned about. */ #[deriving(Eq)] pub enum lint { ctypes, unused_imports, while_true, path_statement, implicit_copies, unrecognized_lint, non_implicitly_copyable_typarams, deprecated_pattern, non_camel_case_types, type_limits, default_methods, unused_unsafe, managed_heap_memory, owned_heap_memory, heap_memory, unused_variable, dead_assignment, unused_mut, unnecessary_allocation, missing_doc, unreachable_code, } pub fn level_to_str(lv: level) -> &'static str { match lv { allow => "allow", warn => "warn", deny => "deny", forbid => "forbid" } } #[deriving(Eq)] pub enum level { allow, warn, deny, forbid } struct LintSpec { lint: lint, desc: &'static str, default: level } pub type LintDict = HashMap<~str, LintSpec>; enum AttributedNode<'self> { Item(@ast::item), Method(&'self ast::method), Crate(@ast::crate), } #[deriving(Eq)] enum LintSource { Node(span), Default, CommandLine } static lint_table: &'static [(&'static str, LintSpec)] = &[ ("ctypes", LintSpec { lint: ctypes, desc: "proper use of core::libc types in foreign modules", default: warn }), ("unused_imports", LintSpec { lint: unused_imports, desc: "imports that are never used", default: warn }), ("while_true", LintSpec { lint: while_true, desc: "suggest using loop { } instead of while(true) { }", default: warn }), ("path_statement", LintSpec { lint: path_statement, desc: "path statements with no effect", default: warn }), ("unrecognized_lint", LintSpec { lint: unrecognized_lint, desc: "unrecognized lint attribute", default: warn }), ("non_implicitly_copyable_typarams", LintSpec { lint: non_implicitly_copyable_typarams, desc: "passing non implicitly copyable types as copy type params", default: warn }), ("implicit_copies", LintSpec { lint: implicit_copies, desc: "implicit copies of non implicitly copyable data", default: warn }), ("deprecated_pattern", LintSpec { lint: deprecated_pattern, desc: "warn about deprecated uses of pattern bindings", default: allow }), ("non_camel_case_types", LintSpec { lint: non_camel_case_types, desc: "types, variants and traits should have camel case names", default: allow }), ("managed_heap_memory", LintSpec { lint: managed_heap_memory, desc: "use of managed (@ type) heap memory", default: allow }), ("owned_heap_memory", LintSpec { lint: owned_heap_memory, desc: "use of owned (~ type) heap memory", default: allow }), ("heap_memory", LintSpec { lint: heap_memory, desc: "use of any (~ type or @ type) heap memory", default: allow }), ("type_limits", LintSpec { lint: type_limits, desc: "comparisons made useless by limits of the types involved", default: warn }), ("default_methods", LintSpec { lint: default_methods, desc: "allow default methods", default: deny }), ("unused_unsafe", LintSpec { lint: unused_unsafe, desc: "unnecessary use of an `unsafe` block", default: warn }), ("unused_variable", LintSpec { lint: unused_variable, desc: "detect variables which are not used in any way", default: warn }), ("dead_assignment", LintSpec { lint: dead_assignment, desc: "detect assignments that will never be read", default: warn }), ("unused_mut", LintSpec { lint: unused_mut, desc: "detect mut variables which don't need to be mutable", default: warn }), ("unnecessary_allocation", LintSpec { lint: unnecessary_allocation, desc: "detects unnecessary allocations that can be eliminated", default: warn }), ("missing_doc", LintSpec { lint: missing_doc, desc: "detects missing documentation for public members", default: allow }), ("unreachable_code", LintSpec { lint: unreachable_code, desc: "detects unreachable code", default: warn }), ]; /* Pass names should not contain a '-', as the compiler normalizes '-' to '_' in command-line flags */ pub fn get_lint_dict() -> LintDict { let mut map = HashMap::new(); for lint_table.each|&(k, v)| { map.insert(k.to_str(), v); } return map; } struct Context { // All known lint modes (string versions) dict: @LintDict, // Current levels of each lint warning curr: SmallIntMap<(level, LintSource)>, // context we're checking in (used to access fields like sess) tcx: ty::ctxt, // Just a simple flag if we're currently recursing into a trait // implementation. This is only used by the lint_missing_doc() pass in_trait_impl: bool, // Another flag for doc lint emissions. Does some parent of the current node // have the doc(hidden) attribute? Treating this as allow(missing_doc) would // play badly with forbid(missing_doc) when it shouldn't. doc_hidden: bool, // When recursing into an attributed node of the ast which modifies lint // levels, this stack keeps track of the previous lint levels of whatever // was modified. lint_stack: ~[(lint, level, LintSource)], // Each of these visitors represents a lint pass. A number of the lint // attributes are registered by adding a visitor to iterate over the ast. // Others operate directly on @ast::item structures (or similar). Finally, // others still are added to the Session object via `add_lint`, and these // are all passed with the lint_session visitor. // // This is a pair so every visitor can visit every node. When a lint pass is // registered, another visitor is created which stops at all items which can // alter the attributes of the ast. This "item stopping visitor" is the // second element of the pair, while the original visitor is the first // element. This means that when visiting a node, the original recursive // call can used the original visitor's method, although the recursing // visitor supplied to the method is the item stopping visitor. visitors: ~[(visit::vt<@mut Context>, visit::vt<@mut Context>)], } impl Context { fn get_level(&self, lint: lint) -> level { match self.curr.find(&(lint as uint)) { Some(&(lvl, _)) => lvl, None => allow } } fn get_source(&self, lint: lint) -> LintSource { match self.curr.find(&(lint as uint)) { Some(&(_, src)) => src, None => Default } } fn set_level(&mut self, lint: lint, level: level, src: LintSource) { if level == allow { self.curr.remove(&(lint as uint)); } else { self.curr.insert(lint as uint, (level, src)); } } fn lint_to_str(&self, lint: lint) -> ~str { for self.dict.each |k, v| { if v.lint == lint { return copy *k; } } fail!("unregistered lint %?", lint); } fn span_lint(&self, lint: lint, span: span, msg: &str) { let (level, src) = match self.curr.find(&(lint as uint)) { Some(&pair) => pair, None => { return; } }; if level == allow { return; } let mut note = None; let msg = match src { Default | CommandLine => { fmt!("%s [-%c %s%s]", msg, match level { warn => 'W', deny => 'D', forbid => 'F', allow => fail!() }, str::replace(self.lint_to_str(lint), "_", "-"), if src == Default { " (default)" } else { "" }) }, Node(src) => { note = Some(src); msg.to_str() } }; match level { warn => { self.tcx.sess.span_warn(span, msg); } deny | forbid => { self.tcx.sess.span_err(span, msg); } allow => fail!(), } for note.each |&span| { self.tcx.sess.span_note(span, "lint level defined here"); } } /** * Merge the lints specified by any lint attributes into the * current lint context, call the provided function, then reset the * lints in effect to their previous state. */ fn with_lint_attrs(@mut self, attrs: &[ast::attribute], f: &fn()) { // Parse all of the lint attributes, and then add them all to the // current dictionary of lint information. Along the way, keep a history // of what we changed so we can roll everything back after invoking the // specified closure let mut pushed = 0u; for each_lint(self.tcx.sess, attrs) |meta, level, lintname| { let lint = match self.dict.find(lintname) { None => { self.span_lint( unrecognized_lint, meta.span, fmt!("unknown `%s` attribute: `%s`", level_to_str(level), *lintname)); loop } Some(lint) => { lint.lint } }; let now = self.get_level(lint); if now == forbid && level != forbid { self.tcx.sess.span_err(meta.span, fmt!("%s(%s) overruled by outer forbid(%s)", level_to_str(level), *lintname, *lintname)); loop; } if now != level { let src = self.get_source(lint); self.lint_stack.push((lint, now, src)); pushed += 1; self.set_level(lint, level, Node(meta.span)); } } // detect doc(hidden) let mut doc_hidden = false; for attr::find_attrs_by_name(attrs, "doc").each |attr| { match attr::get_meta_item_list(attr.node.value) { Some(s) => { if attr::find_meta_items_by_name(s, "hidden").len() > 0 { doc_hidden = true; } } None => {} } } if doc_hidden && !self.doc_hidden { self.doc_hidden = true; } else { doc_hidden = false; } f(); // rollback if doc_hidden && self.doc_hidden { self.doc_hidden = false; } for pushed.times { let (lint, lvl, src) = self.lint_stack.pop(); self.set_level(lint, lvl, src); } } fn add_lint(&mut self, v: visit::vt<@mut Context>) { self.visitors.push((v, item_stopping_visitor(v))); } fn process(@mut self, n: AttributedNode) { // see comment of the `visitors` field in the struct for why there's a // pair instead of just one visitor. match n { Item(it) => { for self.visitors.each |&(orig, stopping)| { (orig.visit_item)(it, self, stopping); } } Crate(c) => { for self.visitors.each |&(_, stopping)| { visit::visit_crate(c, self, stopping); } } // Can't use visit::visit_method_helper because the // item_stopping_visitor has overridden visit_fn(&fk_method(... )) // to be a no-op, so manually invoke visit_fn. Method(m) => { let fk = visit::fk_method(copy m.ident, &m.generics, m); for self.visitors.each |&(orig, stopping)| { (orig.visit_fn)(&fk, &m.decl, &m.body, m.span, m.id, self, stopping); } } } } } pub fn each_lint(sess: session::Session, attrs: &[ast::attribute], f: &fn(@ast::meta_item, level, &~str) -> bool) -> bool { for [allow, warn, deny, forbid].each |&level| { let level_name = level_to_str(level); let attrs = attr::find_attrs_by_name(attrs, level_name); for attrs.each |attr| { let meta = attr.node.value; let metas = match meta.node { ast::meta_list(_, ref metas) => metas, _ => { sess.span_err(meta.span, "malformed lint attribute"); loop; } }; for metas.each |meta| { match meta.node { ast::meta_word(lintname) => { if !f(*meta, level, lintname) { return false; } } _ => { sess.span_err(meta.span, "malformed lint attribute"); } } } } } return true; } // Take a visitor, and modify it so that it will not proceed past subitems. // This is used to make the simple visitors used for the lint passes // not traverse into subitems, since that is handled by the outer // lint visitor. fn item_stopping_visitor(outer: visit::vt) -> visit::vt { visit::mk_vt(@visit::Visitor { visit_item: |_i, _e, _v| { }, visit_fn: |fk, fd, b, s, id, e, v| { match *fk { visit::fk_method(*) => {} _ => (outer.visit_fn)(fk, fd, b, s, id, e, v) } }, .. **(ty_stopping_visitor(outer))}) } fn ty_stopping_visitor(v: visit::vt) -> visit::vt { visit::mk_vt(@visit::Visitor {visit_ty: |_t, _e, _v| { },.. **v}) } fn lint_while_true() -> visit::vt<@mut Context> { visit::mk_vt(@visit::Visitor { visit_expr: |e, cx: @mut Context, vt| { match e.node { ast::expr_while(cond, _) => { match cond.node { ast::expr_lit(@codemap::spanned { node: ast::lit_bool(true), _}) => { cx.span_lint(while_true, e.span, "denote infinite loops with \ loop { ... }"); } _ => () } } _ => () } visit::visit_expr(e, cx, vt); }, .. *visit::default_visitor() }) } fn lint_type_limits() -> visit::vt<@mut Context> { fn is_valid(binop: ast::binop, v: T, min: T, max: T) -> bool { match binop { ast::lt => v <= max, ast::le => v < max, ast::gt => v >= min, ast::ge => v > min, ast::eq | ast::ne => v >= min && v <= max, _ => fail!() } } fn rev_binop(binop: ast::binop) -> ast::binop { match binop { ast::lt => ast::gt, ast::le => ast::ge, ast::gt => ast::lt, ast::ge => ast::le, _ => binop } } // for int & uint, be conservative with the warnings, so that the // warnings are consistent between 32- and 64-bit platforms fn int_ty_range(int_ty: ast::int_ty) -> (i64, i64) { match int_ty { ast::ty_i => (i64::min_value, i64::max_value), ast::ty_char => (u32::min_value as i64, u32::max_value as i64), ast::ty_i8 => (i8::min_value as i64, i8::max_value as i64), ast::ty_i16 => (i16::min_value as i64, i16::max_value as i64), ast::ty_i32 => (i32::min_value as i64, i32::max_value as i64), ast::ty_i64 => (i64::min_value, i64::max_value) } } fn uint_ty_range(uint_ty: ast::uint_ty) -> (u64, u64) { match uint_ty { ast::ty_u => (u64::min_value, u64::max_value), ast::ty_u8 => (u8::min_value as u64, u8::max_value as u64), ast::ty_u16 => (u16::min_value as u64, u16::max_value as u64), ast::ty_u32 => (u32::min_value as u64, u32::max_value as u64), ast::ty_u64 => (u64::min_value, u64::max_value) } } fn check_limits(cx: &Context, binop: ast::binop, l: &ast::expr, r: &ast::expr) -> bool { let (lit, expr, swap) = match (&l.node, &r.node) { (&ast::expr_lit(_), _) => (l, r, true), (_, &ast::expr_lit(_)) => (r, l, false), _ => return true }; // Normalize the binop so that the literal is always on the RHS in // the comparison let norm_binop = if swap { rev_binop(binop) } else { binop }; match ty::get(ty::expr_ty(cx.tcx, @/*bad*/copy *expr)).sty { ty::ty_int(int_ty) => { let (min, max) = int_ty_range(int_ty); let lit_val: i64 = match lit.node { ast::expr_lit(@li) => match li.node { ast::lit_int(v, _) => v, ast::lit_uint(v, _) => v as i64, ast::lit_int_unsuffixed(v) => v, _ => return true }, _ => fail!() }; is_valid(norm_binop, lit_val, min, max) } ty::ty_uint(uint_ty) => { let (min, max): (u64, u64) = uint_ty_range(uint_ty); let lit_val: u64 = match lit.node { ast::expr_lit(@li) => match li.node { ast::lit_int(v, _) => v as u64, ast::lit_uint(v, _) => v, ast::lit_int_unsuffixed(v) => v as u64, _ => return true }, _ => fail!() }; is_valid(norm_binop, lit_val, min, max) } _ => true } } fn is_comparison(binop: ast::binop) -> bool { match binop { ast::eq | ast::lt | ast::le | ast::ne | ast::ge | ast::gt => true, _ => false } } visit::mk_vt(@visit::Visitor { visit_expr: |e, cx: @mut Context, vt| { match e.node { ast::expr_binary(ref binop, @ref l, @ref r) => { if is_comparison(*binop) && !check_limits(cx, *binop, l, r) { cx.span_lint(type_limits, e.span, "comparison is useless due to type limits"); } } _ => () } visit::visit_expr(e, cx, vt); }, .. *visit::default_visitor() }) } fn check_item_default_methods(cx: &Context, item: @ast::item) { match item.node { ast::item_trait(_, _, ref methods) => { for methods.each |method| { match *method { ast::required(*) => {} ast::provided(*) => { cx.span_lint(default_methods, item.span, "default methods are experimental"); } } } } _ => {} } } fn check_item_ctypes(cx: &Context, it: @ast::item) { fn check_foreign_fn(cx: &Context, decl: &ast::fn_decl) { let tys = vec::map(decl.inputs, |a| a.ty ); for vec::each(vec::append_one(tys, decl.output)) |ty| { match ty.node { ast::ty_path(_, id) => { match cx.tcx.def_map.get_copy(&id) { ast::def_prim_ty(ast::ty_int(ast::ty_i)) => { cx.span_lint(ctypes, ty.span, "found rust type `int` in foreign module, while \ libc::c_int or libc::c_long should be used"); } ast::def_prim_ty(ast::ty_uint(ast::ty_u)) => { cx.span_lint(ctypes, ty.span, "found rust type `uint` in foreign module, while \ libc::c_uint or libc::c_ulong should be used"); } _ => () } } _ => () } } } match it.node { ast::item_foreign_mod(ref nmod) if !nmod.abis.is_intrinsic() => { for nmod.items.each |ni| { match ni.node { ast::foreign_item_fn(ref decl, _, _) => { check_foreign_fn(cx, decl); } // FIXME #4622: Not implemented. ast::foreign_item_const(*) => {} } } } _ => {/* nothing to do */ } } } fn check_type_for_lint(cx: &Context, lint: lint, span: span, ty: ty::t) { if cx.get_level(lint) == allow { return } let mut n_box = 0; let mut n_uniq = 0; ty::fold_ty(cx.tcx, ty, |t| { match ty::get(t).sty { ty::ty_box(_) => n_box += 1, ty::ty_uniq(_) => n_uniq += 1, _ => () }; t }); if n_uniq > 0 && lint != managed_heap_memory { let s = ty_to_str(cx.tcx, ty); let m = ~"type uses owned (~ type) pointers: " + s; cx.span_lint(lint, span, m); } if n_box > 0 && lint != owned_heap_memory { let s = ty_to_str(cx.tcx, ty); let m = ~"type uses managed (@ type) pointers: " + s; cx.span_lint(lint, span, m); } } fn check_type(cx: &Context, span: span, ty: ty::t) { for [managed_heap_memory, owned_heap_memory, heap_memory].each |lint| { check_type_for_lint(cx, *lint, span, ty); } } fn check_item_heap(cx: &Context, it: @ast::item) { match it.node { ast::item_fn(*) | ast::item_ty(*) | ast::item_enum(*) | ast::item_struct(*) => check_type(cx, it.span, ty::node_id_to_type(cx.tcx, it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { ast::item_struct(struct_def, _) => { for struct_def.fields.each |struct_field| { check_type(cx, struct_field.span, ty::node_id_to_type(cx.tcx, struct_field.node.id)); } } _ => () } } fn lint_heap() -> visit::vt<@mut Context> { visit::mk_vt(@visit::Visitor { visit_expr: |e, cx: @mut Context, vt| { let ty = ty::expr_ty(cx.tcx, e); check_type(cx, e.span, ty); visit::visit_expr(e, cx, vt); }, .. *visit::default_visitor() }) } fn lint_path_statement() -> visit::vt<@mut Context> { visit::mk_vt(@visit::Visitor { visit_stmt: |s, cx: @mut Context, vt| { match s.node { ast::stmt_semi( @ast::expr { node: ast::expr_path(_), _ }, _ ) => { cx.span_lint(path_statement, s.span, "path statement with no effect"); } _ => () } visit::visit_stmt(s, cx, vt); }, .. *visit::default_visitor() }) } fn check_item_non_camel_case_types(cx: &Context, it: @ast::item) { fn is_camel_case(cx: ty::ctxt, ident: ast::ident) -> bool { let ident = cx.sess.str_of(ident); assert!(!ident.is_empty()); let ident = ident_without_trailing_underscores(*ident); let ident = ident_without_leading_underscores(ident); char::is_uppercase(str::char_at(ident, 0)) && !ident.contains_char('_') } fn ident_without_trailing_underscores<'r>(ident: &'r str) -> &'r str { match str::rfind(ident, |c| c != '_') { Some(idx) => str::slice(ident, 0, idx + 1), None => ident, // all underscores } } fn ident_without_leading_underscores<'r>(ident: &'r str) -> &'r str { match str::find(ident, |c| c != '_') { Some(idx) => str::slice(ident, idx, ident.len()), None => ident // all underscores } } fn check_case(cx: &Context, ident: ast::ident, span: span) { if !is_camel_case(cx.tcx, ident) { cx.span_lint(non_camel_case_types, span, "type, variant, or trait should have \ a camel case identifier"); } } match it.node { ast::item_ty(*) | ast::item_struct(*) | ast::item_trait(*) => { check_case(cx, it.ident, it.span) } ast::item_enum(ref enum_definition, _) => { check_case(cx, it.ident, it.span); for enum_definition.variants.each |variant| { check_case(cx, variant.node.name, variant.span); } } _ => () } } fn lint_unused_unsafe() -> visit::vt<@mut Context> { visit::mk_vt(@visit::Visitor { visit_expr: |e, cx: @mut Context, vt| { match e.node { ast::expr_block(ref blk) if blk.node.rules == ast::unsafe_blk => { if !cx.tcx.used_unsafe.contains(&blk.node.id) { cx.span_lint(unused_unsafe, blk.span, "unnecessary `unsafe` block"); } } _ => () } visit::visit_expr(e, cx, vt); }, .. *visit::default_visitor() }) } fn lint_unused_mut() -> visit::vt<@mut Context> { fn check_pat(cx: &Context, p: @ast::pat) { let mut used = false; let mut bindings = 0; do pat_util::pat_bindings(cx.tcx.def_map, p) |_, id, _, _| { used = used || cx.tcx.used_mut_nodes.contains(&id); bindings += 1; } if !used { let msg = if bindings == 1 { "variable does not need to be mutable" } else { "variables do not need to be mutable" }; cx.span_lint(unused_mut, p.span, msg); } } fn visit_fn_decl(cx: &Context, fd: &ast::fn_decl) { for fd.inputs.each |arg| { if arg.is_mutbl { check_pat(cx, arg.pat); } } } visit::mk_vt(@visit::Visitor { visit_local: |l, cx: @mut Context, vt| { if l.node.is_mutbl { check_pat(cx, l.node.pat); } visit::visit_local(l, cx, vt); }, visit_fn: |a, fd, b, c, d, cx, vt| { visit_fn_decl(cx, fd); visit::visit_fn(a, fd, b, c, d, cx, vt); }, visit_ty_method: |tm, cx, vt| { visit_fn_decl(cx, &tm.decl); visit::visit_ty_method(tm, cx, vt); }, visit_struct_method: |sm, cx, vt| { visit_fn_decl(cx, &sm.decl); visit::visit_struct_method(sm, cx, vt); }, visit_trait_method: |tm, cx, vt| { match *tm { ast::required(ref tm) => visit_fn_decl(cx, &tm.decl), ast::provided(m) => visit_fn_decl(cx, &m.decl) } visit::visit_trait_method(tm, cx, vt); }, .. *visit::default_visitor() }) } fn lint_session() -> visit::vt<@mut Context> { ast_util::id_visitor(|id, cx: @mut Context| { match cx.tcx.sess.lints.pop(&id) { None => {}, Some(l) => { do vec::consume(l) |_, (lint, span, msg)| { cx.span_lint(lint, span, msg) } } } }) } fn lint_unnecessary_allocations() -> visit::vt<@mut Context> { // Warn if string and vector literals with sigils are immediately borrowed. // Those can have the sigil removed. fn check(cx: &Context, e: @ast::expr) { match e.node { ast::expr_vstore(e2, ast::expr_vstore_uniq) | ast::expr_vstore(e2, ast::expr_vstore_box) => { match e2.node { ast::expr_lit(@codemap::spanned{ node: ast::lit_str(*), _}) | ast::expr_vec(*) => {} _ => return } } _ => return } match cx.tcx.adjustments.find_copy(&e.id) { Some(@ty::AutoDerefRef(ty::AutoDerefRef { autoref: Some(ty::AutoBorrowVec(*)), _ })) => { cx.span_lint(unnecessary_allocation, e.span, "unnecessary allocation, the sigil can be \ removed"); } _ => () } } visit::mk_vt(@visit::Visitor { visit_expr: |e, cx: @mut Context, vt| { check(cx, e); visit::visit_expr(e, cx, vt); }, .. *visit::default_visitor() }) } fn lint_missing_doc() -> visit::vt<@mut Context> { fn check_attrs(cx: @mut Context, attrs: &[ast::attribute], sp: span, msg: &str) { // If we're building a test harness, then warning about documentation is // probably not really relevant right now if cx.tcx.sess.opts.test { return } // If we have doc(hidden), nothing to do if cx.doc_hidden { return } // If we're documented, nothing to do if attrs.any(|a| a.node.is_sugared_doc) { return } // otherwise, warn! cx.span_lint(missing_doc, sp, msg); } visit::mk_vt(@visit::Visitor { visit_struct_method: |m, cx, vt| { if m.vis == ast::public { check_attrs(cx, m.attrs, m.span, "missing documentation for a method"); } visit::visit_struct_method(m, cx, vt); }, visit_ty_method: |m, cx, vt| { // All ty_method objects are linted about because they're part of a // trait (no visibility) check_attrs(cx, m.attrs, m.span, "missing documentation for a method"); visit::visit_ty_method(m, cx, vt); }, visit_fn: |fk, d, b, sp, id, cx, vt| { // Only warn about explicitly public methods. Soon implicit // public-ness will hopefully be going away. match *fk { visit::fk_method(_, _, m) if m.vis == ast::public => { // If we're in a trait implementation, no need to duplicate // documentation if !cx.in_trait_impl { check_attrs(cx, m.attrs, sp, "missing documentation for a method"); } } _ => {} } visit::visit_fn(fk, d, b, sp, id, cx, vt); }, visit_item: |it, cx, vt| { match it.node { // Go ahead and match the fields here instead of using // visit_struct_field while we have access to the enclosing // struct's visibility ast::item_struct(sdef, _) if it.vis == ast::public => { check_attrs(cx, it.attrs, it.span, "missing documentation for a struct"); for sdef.fields.each |field| { match field.node.kind { ast::named_field(_, vis) if vis != ast::private => { check_attrs(cx, field.node.attrs, field.span, "missing documentation for a field"); } ast::unnamed_field | ast::named_field(*) => {} } } } ast::item_trait(*) if it.vis == ast::public => { check_attrs(cx, it.attrs, it.span, "missing documentation for a trait"); } ast::item_fn(*) if it.vis == ast::public => { check_attrs(cx, it.attrs, it.span, "missing documentation for a function"); } _ => {} }; visit::visit_item(it, cx, vt); }, .. *visit::default_visitor() }) } pub fn check_crate(tcx: ty::ctxt, crate: @ast::crate) { let cx = @mut Context { dict: @get_lint_dict(), curr: SmallIntMap::new(), tcx: tcx, lint_stack: ~[], visitors: ~[], in_trait_impl: false, doc_hidden: false, }; // Install defaults. for cx.dict.each_value |spec| { cx.set_level(spec.lint, spec.default, Default); } // Install command-line options, overriding defaults. for tcx.sess.opts.lint_opts.each |&(lint, level)| { cx.set_level(lint, level, CommandLine); } // Register each of the lint passes with the context cx.add_lint(lint_while_true()); cx.add_lint(lint_path_statement()); cx.add_lint(lint_heap()); cx.add_lint(lint_type_limits()); cx.add_lint(lint_unused_unsafe()); cx.add_lint(lint_unused_mut()); cx.add_lint(lint_session()); cx.add_lint(lint_unnecessary_allocations()); cx.add_lint(lint_missing_doc()); // Actually perform the lint checks (iterating the ast) do cx.with_lint_attrs(crate.node.attrs) { cx.process(Crate(crate)); visit::visit_crate(crate, cx, visit::mk_vt(@visit::Visitor { visit_item: |it, cx: @mut Context, vt| { do cx.with_lint_attrs(it.attrs) { match it.node { ast::item_impl(_, Some(*), _, _) => { cx.in_trait_impl = true; } _ => {} } check_item_ctypes(cx, it); check_item_non_camel_case_types(cx, it); check_item_default_methods(cx, it); check_item_heap(cx, it); cx.process(Item(it)); visit::visit_item(it, cx, vt); cx.in_trait_impl = false; } }, visit_fn: |fk, decl, body, span, id, cx, vt| { match *fk { visit::fk_method(_, _, m) => { do cx.with_lint_attrs(m.attrs) { cx.process(Method(m)); visit::visit_fn(fk, decl, body, span, id, cx, vt); } } _ => { visit::visit_fn(fk, decl, body, span, id, cx, vt); } } }, .. *visit::default_visitor() })); } // If we missed any lints added to the session, then there's a bug somewhere // in the iteration code. for tcx.sess.lints.each |_, v| { for v.each |t| { match *t { (lint, span, ref msg) => tcx.sess.span_bug(span, fmt!("unprocessed lint %?: %s", lint, *msg)) } } } tcx.sess.abort_if_errors(); }