// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types, non_snake_case)] //! Code that is useful in various codegen modules. use llvm::{self, TypeKind}; use llvm::{True, False, Bool, BasicBlock}; use rustc::hir::def_id::DefId; use rustc::middle::lang_items::LangItem; use abi; use base; use builder::Builder; use consts; use declare; use type_::Type; use type_of::LayoutLlvmExt; use value::Value; use interfaces::{Backend, CommonMethods}; use rustc::ty::{self, Ty, TyCtxt}; use rustc::ty::layout::{HasDataLayout, LayoutOf}; use rustc::hir; use interfaces::BuilderMethods; use libc::{c_uint, c_char}; use syntax::symbol::LocalInternedString; use syntax_pos::{Span, DUMMY_SP}; pub use context::CodegenCx; pub fn type_needs_drop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool { ty.needs_drop(tcx, ty::ParamEnv::reveal_all()) } pub fn type_is_sized<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool { ty.is_sized(tcx.at(DUMMY_SP), ty::ParamEnv::reveal_all()) } pub fn type_is_freeze<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool { ty.is_freeze(tcx, ty::ParamEnv::reveal_all(), DUMMY_SP) } pub struct OperandBundleDef<'a, Value : 'a> { pub name: &'a str, pub val: Value } impl OperandBundleDef<'ll, &'ll Value> { pub fn new(name: &'ll str, val: &'ll Value) -> Self { OperandBundleDef { name, val } } } pub enum IntPredicate { IntEQ, IntNE, IntUGT, IntUGE, IntULT, IntULE, IntSGT, IntSGE, IntSLT, IntSLE } #[allow(dead_code)] pub enum RealPredicate { RealPredicateFalse, RealOEQ, RealOGT, RealOGE, RealOLT, RealOLE, RealONE, RealORD, RealUNO, RealUEQ, RealUGT, RealUGE, RealULT, RealULE, RealUNE, RealPredicateTrue } pub enum AtomicRmwBinOp { AtomicXchg, AtomicAdd, AtomicSub, AtomicAnd, AtomicNand, AtomicOr, AtomicXor, AtomicMax, AtomicMin, AtomicUMax, AtomicUMin } pub enum AtomicOrdering { #[allow(dead_code)] NotAtomic, Unordered, Monotonic, // Consume, // Not specified yet. Acquire, Release, AcquireRelease, SequentiallyConsistent, } pub enum SynchronizationScope { // FIXME: figure out if this variant is needed at all. #[allow(dead_code)] Other, SingleThread, CrossThread, } /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ /// A structure representing an active landing pad for the duration of a basic /// block. /// /// Each `Block` may contain an instance of this, indicating whether the block /// is part of a landing pad or not. This is used to make decision about whether /// to emit `invoke` instructions (e.g. in a landing pad we don't continue to /// use `invoke`) and also about various function call metadata. /// /// For GNU exceptions (`landingpad` + `resume` instructions) this structure is /// just a bunch of `None` instances (not too interesting), but for MSVC /// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data. /// When inside of a landing pad, each function call in LLVM IR needs to be /// annotated with which landing pad it's a part of. This is accomplished via /// the `OperandBundleDef` value created for MSVC landing pads. pub struct Funclet<'ll> { cleanuppad: &'ll Value, operand: OperandBundleDef<'ll, &'ll Value>, } impl Funclet<'ll> { pub fn new(cleanuppad: &'ll Value) -> Self { Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", cleanuppad), } } pub fn cleanuppad(&self) -> &'ll Value { self.cleanuppad } pub fn bundle(&self) -> &OperandBundleDef<'ll, &'ll Value> { &self.operand } } impl Backend for CodegenCx<'ll, 'tcx, &'ll Value> { type Value = &'ll Value; type BasicBlock = &'ll BasicBlock; type Type = &'ll Type; type Context = &'ll llvm::Context; } impl<'ll, 'tcx : 'll> CommonMethods for CodegenCx<'ll, 'tcx, &'ll Value> { fn val_ty(v: &'ll Value) -> &'ll Type { unsafe { llvm::LLVMTypeOf(v) } } // LLVM constant constructors. fn c_null(t: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMConstNull(t) } } fn c_undef(t: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMGetUndef(t) } } fn c_int(t: &'ll Type, i: i64) -> &'ll Value { unsafe { llvm::LLVMConstInt(t, i as u64, True) } } fn c_uint(t: &'ll Type, i: u64) -> &'ll Value { unsafe { llvm::LLVMConstInt(t, i, False) } } fn c_uint_big(t: &'ll Type, u: u128) -> &'ll Value { unsafe { let words = [u as u64, (u >> 64) as u64]; llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr()) } } fn c_bool(&self, val: bool) -> &'ll Value { Self::c_uint(Type::i1(&self), val as u64) } fn c_i32(&self, i: i32) -> &'ll Value { Self::c_int(Type::i32(&self), i as i64) } fn c_u32(&self, i: u32) -> &'ll Value { Self::c_uint(Type::i32(&self), i as u64) } fn c_u64(&self, i: u64) -> &'ll Value { Self::c_uint(Type::i64(&self), i) } fn c_usize(&self, i: u64) -> &'ll Value { let bit_size = self.data_layout().pointer_size.bits(); if bit_size < 64 { // make sure it doesn't overflow assert!(i < (1< &'ll Value { Self::c_uint(Type::i8(&self), i as u64) } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. fn c_cstr( &self, s: LocalInternedString, null_terminated: bool, ) -> &'ll Value { unsafe { if let Some(&llval) = &self.const_cstr_cache.borrow().get(&s) { return llval; } let sc = llvm::LLVMConstStringInContext(&self.llcx, s.as_ptr() as *const c_char, s.len() as c_uint, !null_terminated as Bool); let sym = &self.generate_local_symbol_name("str"); let g = declare::define_global(&self, &sym[..], Self::val_ty(sc)).unwrap_or_else(||{ bug!("symbol `{}` is already defined", sym); }); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage); &self.const_cstr_cache.borrow_mut().insert(s, g); g } } // NB: Do not use `do_spill_noroot` to make this into a constant string, or // you will be kicked off fast isel. See issue #4352 for an example of this. fn c_str_slice(&self, s: LocalInternedString) -> &'ll Value { let len = s.len(); let cs = consts::ptrcast(&self.c_cstr(s, false), &self.layout_of(&self.tcx.mk_str()).llvm_type(&self).ptr_to()); &self.c_fat_ptr(cs, &self.c_usize(len as u64)) } fn c_fat_ptr( &self, ptr: &'ll Value, meta: &'ll Value ) -> &'ll Value { assert_eq!(abi::FAT_PTR_ADDR, 0); assert_eq!(abi::FAT_PTR_EXTRA, 1); &self.c_struct(&[ptr, meta], false) } fn c_struct( &self, elts: &[&'ll Value], packed: bool ) -> &'ll Value { Self::c_struct_in_context(&self.llcx, elts, packed) } fn c_struct_in_context( llcx: &'a llvm::Context, elts: &[&'a Value], packed: bool, ) -> &'a Value { unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool) } } fn c_array(ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value { unsafe { return llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint); } } fn c_vector(elts: &[&'ll Value]) -> &'ll Value { unsafe { return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint); } } fn c_bytes(&self, bytes: &[u8]) -> &'ll Value { Self::c_bytes_in_context(&self.llcx, bytes) } fn c_bytes_in_context(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value { unsafe { let ptr = bytes.as_ptr() as *const c_char; return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True); } } fn const_get_elt(v: &'ll Value, idx: u64) -> &'ll Value { unsafe { assert_eq!(idx as c_uint as u64, idx); let us = &[idx as c_uint]; let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint); debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r); r } } fn const_get_real(v: &'ll Value) -> Option<(f64, bool)> { unsafe { if Self::is_const_real(v) { let mut loses_info: llvm::Bool = ::std::mem::uninitialized(); let r = llvm::LLVMConstRealGetDouble(v, &mut loses_info); let loses_info = if loses_info == 1 { true } else { false }; Some((r, loses_info)) } else { None } } } fn const_to_uint(v: &'ll Value) -> u64 { unsafe { llvm::LLVMConstIntGetZExtValue(v) } } fn is_const_integral(v: &'ll Value) -> bool { unsafe { llvm::LLVMIsAConstantInt(v).is_some() } } fn is_const_real(v: &'ll Value) -> bool { unsafe { llvm::LLVMIsAConstantFP(v).is_some() } } fn const_to_opt_u128(v: &'ll Value, sign_ext: bool) -> Option { unsafe { if Self::is_const_integral(v) { let (mut lo, mut hi) = (0u64, 0u64); let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo); if success { Some(hi_lo_to_u128(lo, hi)) } else { None } } else { None } } } } #[inline] fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 { ((hi as u128) << 64) | (lo as u128) } pub fn langcall(tcx: TyCtxt, span: Option, msg: &str, li: LangItem) -> DefId { tcx.lang_items().require(li).unwrap_or_else(|s| { let msg = format!("{} {}", msg, s); match span { Some(span) => tcx.sess.span_fatal(span, &msg[..]), None => tcx.sess.fatal(&msg[..]), } }) } // To avoid UB from LLVM, these two functions mask RHS with an // appropriate mask unconditionally (i.e. the fallback behavior for // all shifts). For 32- and 64-bit types, this matches the semantics // of Java. (See related discussion on #1877 and #10183.) pub fn build_unchecked_lshift( bx: &Builder<'a, 'll, 'tcx>, lhs: &'ll Value, rhs: &'ll Value ) -> &'ll Value { let rhs = base::cast_shift_expr_rhs(bx, hir::BinOpKind::Shl, lhs, rhs); // #1877, #10183: Ensure that input is always valid let rhs = shift_mask_rhs(bx, rhs); bx.shl(lhs, rhs) } pub fn build_unchecked_rshift( bx: &Builder<'a, 'll, 'tcx>, lhs_t: Ty<'tcx>, lhs: &'ll Value, rhs: &'ll Value ) -> &'ll Value { let rhs = base::cast_shift_expr_rhs(bx, hir::BinOpKind::Shr, lhs, rhs); // #1877, #10183: Ensure that input is always valid let rhs = shift_mask_rhs(bx, rhs); let is_signed = lhs_t.is_signed(); if is_signed { bx.ashr(lhs, rhs) } else { bx.lshr(lhs, rhs) } } fn shift_mask_rhs(bx: &Builder<'a, 'll, 'tcx>, rhs: &'ll Value) -> &'ll Value { let rhs_llty = CodegenCx::val_ty(rhs); bx.and(rhs, shift_mask_val(bx, rhs_llty, rhs_llty, false)) } pub fn shift_mask_val( bx: &Builder<'a, 'll, 'tcx>, llty: &'ll Type, mask_llty: &'ll Type, invert: bool ) -> &'ll Value { let kind = llty.kind(); match kind { TypeKind::Integer => { // i8/u8 can shift by at most 7, i16/u16 by at most 15, etc. let val = llty.int_width() - 1; if invert { CodegenCx::c_int(mask_llty, !val as i64) } else { CodegenCx::c_uint(mask_llty, val) } }, TypeKind::Vector => { let mask = shift_mask_val(bx, llty.element_type(), mask_llty.element_type(), invert); bx.vector_splat(mask_llty.vector_length(), mask) }, _ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind), } }