use rustc::lint::*; use rustc_front::hir::*; use reexport::*; use rustc_front::util::{is_comparison_binop, binop_to_string}; use syntax::codemap::Span; use rustc_front::visit::{FnKind, Visitor, walk_ty}; use rustc::middle::ty; use syntax::ast::IntTy::*; use syntax::ast::UintTy::*; use syntax::ast::FloatTy::*; use utils::{match_type, snippet, span_lint, span_help_and_lint, in_macro, in_external_macro}; use utils::{LL_PATH, VEC_PATH}; /// Handles all the linting of funky types #[allow(missing_copy_implementations)] pub struct TypePass; declare_lint!(pub BOX_VEC, Warn, "usage of `Box>`, vector elements are already on the heap"); declare_lint!(pub LINKEDLIST, Warn, "usage of LinkedList, usually a vector is faster, or a more specialized data \ structure like a RingBuf"); impl LintPass for TypePass { fn get_lints(&self) -> LintArray { lint_array!(BOX_VEC, LINKEDLIST) } fn check_ty(&mut self, cx: &Context, ast_ty: &Ty) { if let Some(ty) = cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) { if let ty::TyBox(ref inner) = ty.sty { if match_type(cx, inner, &VEC_PATH) { span_help_and_lint( cx, BOX_VEC, ast_ty.span, "you seem to be trying to use `Box>`. Consider using just `Vec`", "`Vec` is already on the heap, `Box>` makes an extra allocation."); } } else if match_type(cx, ty, &LL_PATH) { span_help_and_lint( cx, LINKEDLIST, ast_ty.span, "I see you're using a LinkedList! Perhaps you meant some other data structure?", "a RingBuf might work"); } } } } #[allow(missing_copy_implementations)] pub struct LetPass; declare_lint!(pub LET_UNIT_VALUE, Warn, "creating a let binding to a value of unit type, which usually can't be used afterwards"); fn check_let_unit(cx: &Context, decl: &Decl) { if let DeclLocal(ref local) = decl.node { let bindtype = &cx.tcx.pat_ty(&local.pat).sty; if *bindtype == ty::TyTuple(vec![]) { if in_external_macro(cx, decl.span) || in_macro(cx, local.pat.span) { return; } span_lint(cx, LET_UNIT_VALUE, decl.span, &format!( "this let-binding has unit value. Consider omitting `let {} =`", snippet(cx, local.pat.span, ".."))); } } } impl LintPass for LetPass { fn get_lints(&self) -> LintArray { lint_array!(LET_UNIT_VALUE) } fn check_decl(&mut self, cx: &Context, decl: &Decl) { check_let_unit(cx, decl) } } declare_lint!(pub UNIT_CMP, Warn, "comparing unit values (which is always `true` or `false`, respectively)"); #[allow(missing_copy_implementations)] pub struct UnitCmp; impl LintPass for UnitCmp { fn get_lints(&self) -> LintArray { lint_array!(UNIT_CMP) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if in_macro(cx, expr.span) { return; } if let ExprBinary(ref cmp, ref left, _) = expr.node { let op = cmp.node; let sty = &cx.tcx.expr_ty(left).sty; if *sty == ty::TyTuple(vec![]) && is_comparison_binop(op) { let result = match op { BiEq | BiLe | BiGe => "true", _ => "false" }; span_lint(cx, UNIT_CMP, expr.span, &format!( "{}-comparison of unit values detected. This will always be {}", binop_to_string(op), result)); } } } } pub struct CastPass; declare_lint!(pub CAST_PRECISION_LOSS, Allow, "casts that cause loss of precision, e.g `x as f32` where `x: u64`"); declare_lint!(pub CAST_SIGN_LOSS, Allow, "casts from signed types to unsigned types, e.g `x as u32` where `x: i32`"); declare_lint!(pub CAST_POSSIBLE_TRUNCATION, Allow, "casts that may cause truncation of the value, e.g `x as u8` where `x: u32`, or `x as i32` where `x: f32`"); declare_lint!(pub CAST_POSSIBLE_WRAP, Allow, "casts that may cause wrapping around the value, e.g `x as i32` where `x: u32` and `x > i32::MAX`"); /// Returns the size in bits of an integral type. /// Will return 0 if the type is not an int or uint variant fn int_ty_to_nbits(typ: &ty::TyS) -> usize { let n = match typ.sty { ty::TyInt(i) => 4 << (i as usize), ty::TyUint(u) => 4 << (u as usize), _ => 0 }; // n == 4 is the usize/isize case if n == 4 { ::std::usize::BITS } else { n } } fn is_isize_or_usize(typ: &ty::TyS) -> bool { match typ.sty { ty::TyInt(TyIs) | ty::TyUint(TyUs) => true, _ => false } } fn span_precision_loss_lint(cx: &Context, expr: &Expr, cast_from: &ty::TyS, cast_to_f64: bool) { let mantissa_nbits = if cast_to_f64 {52} else {23}; let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64; let arch_dependent_str = "on targets with 64-bit wide pointers "; let from_nbits_str = if arch_dependent {"64".to_owned()} else if is_isize_or_usize(cast_from) {"32 or 64".to_owned()} else {int_ty_to_nbits(cast_from).to_string()}; span_lint(cx, CAST_PRECISION_LOSS, expr.span, &format!("casting {0} to {1} causes a loss of precision {2}\ ({0} is {3} bits wide, but {1}'s mantissa is only {4} bits wide)", cast_from, if cast_to_f64 {"f64"} else {"f32"}, if arch_dependent {arch_dependent_str} else {""}, from_nbits_str, mantissa_nbits)); } enum ArchSuffix { _32, _64, None } fn check_truncation_and_wrapping(cx: &Context, expr: &Expr, cast_from: &ty::TyS, cast_to: &ty::TyS) { let arch_64_suffix = " on targets with 64-bit wide pointers"; let arch_32_suffix = " on targets with 32-bit wide pointers"; let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed(); let (from_nbits, to_nbits) = (int_ty_to_nbits(cast_from), int_ty_to_nbits(cast_to)); let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) = match (is_isize_or_usize(cast_from), is_isize_or_usize(cast_to)) { (true, true) | (false, false) => ( to_nbits < from_nbits, ArchSuffix::None, to_nbits == from_nbits && cast_unsigned_to_signed, ArchSuffix::None ), (true, false) => ( to_nbits <= 32, if to_nbits == 32 {ArchSuffix::_64} else {ArchSuffix::None}, to_nbits <= 32 && cast_unsigned_to_signed, ArchSuffix::_32 ), (false, true) => ( from_nbits == 64, ArchSuffix::_32, cast_unsigned_to_signed, if from_nbits == 64 {ArchSuffix::_64} else {ArchSuffix::_32} ), }; if span_truncation { span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span, &format!("casting {} to {} may truncate the value{}", cast_from, cast_to, match suffix_truncation { ArchSuffix::_32 => arch_32_suffix, ArchSuffix::_64 => arch_64_suffix, ArchSuffix::None => "" })); } if span_wrap { span_lint(cx, CAST_POSSIBLE_WRAP, expr.span, &format!("casting {} to {} may wrap around the value{}", cast_from, cast_to, match suffix_wrap { ArchSuffix::_32 => arch_32_suffix, ArchSuffix::_64 => arch_64_suffix, ArchSuffix::None => "" })); } } impl LintPass for CastPass { fn get_lints(&self) -> LintArray { lint_array!(CAST_PRECISION_LOSS, CAST_SIGN_LOSS, CAST_POSSIBLE_TRUNCATION, CAST_POSSIBLE_WRAP) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprCast(ref ex, _) = expr.node { let (cast_from, cast_to) = (cx.tcx.expr_ty(ex), cx.tcx.expr_ty(expr)); if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) { match (cast_from.is_integral(), cast_to.is_integral()) { (true, false) => { let from_nbits = int_ty_to_nbits(cast_from); let to_nbits = if let ty::TyFloat(TyF32) = cast_to.sty {32} else {64}; if is_isize_or_usize(cast_from) || from_nbits >= to_nbits { span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64); } }, (false, true) => { span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span, &format!("casting {} to {} may truncate the value", cast_from, cast_to)); if !cast_to.is_signed() { span_lint(cx, CAST_SIGN_LOSS, expr.span, &format!("casting {} to {} may lose the sign of the value", cast_from, cast_to)); } }, (true, true) => { if cast_from.is_signed() && !cast_to.is_signed() { span_lint(cx, CAST_SIGN_LOSS, expr.span, &format!("casting {} to {} may lose the sign of the value", cast_from, cast_to)); } check_truncation_and_wrapping(cx, expr, cast_from, cast_to); } (false, false) => { if let (&ty::TyFloat(TyF64), &ty::TyFloat(TyF32)) = (&cast_from.sty, &cast_to.sty) { span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span, "casting f64 to f32 may truncate the value"); } } } } } } } declare_lint!(pub TYPE_COMPLEXITY, Warn, "usage of very complex types; recommends factoring out parts into `type` definitions"); #[allow(missing_copy_implementations)] pub struct TypeComplexityPass; impl LintPass for TypeComplexityPass { fn get_lints(&self) -> LintArray { lint_array!(TYPE_COMPLEXITY) } fn check_fn(&mut self, cx: &Context, _: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) { check_fndecl(cx, decl); } fn check_struct_field(&mut self, cx: &Context, field: &StructField) { check_type(cx, &field.node.ty); } fn check_variant(&mut self, cx: &Context, var: &Variant, _: &Generics) { // StructVariant is covered by check_struct_field if let TupleVariantKind(ref args) = var.node.kind { for arg in args { check_type(cx, &arg.ty); } } } fn check_item(&mut self, cx: &Context, item: &Item) { match item.node { ItemStatic(ref ty, _, _) | ItemConst(ref ty, _) => check_type(cx, ty), // functions, enums, structs, impls and traits are covered _ => () } } fn check_trait_item(&mut self, cx: &Context, item: &TraitItem) { match item.node { ConstTraitItem(ref ty, _) | TypeTraitItem(_, Some(ref ty)) => check_type(cx, ty), MethodTraitItem(MethodSig { ref decl, .. }, None) => check_fndecl(cx, decl), // methods with default impl are covered by check_fn _ => () } } fn check_impl_item(&mut self, cx: &Context, item: &ImplItem) { match item.node { ConstImplItem(ref ty, _) | TypeImplItem(ref ty) => check_type(cx, ty), // methods are covered by check_fn _ => () } } fn check_local(&mut self, cx: &Context, local: &Local) { if let Some(ref ty) = local.ty { check_type(cx, ty); } } } fn check_fndecl(cx: &Context, decl: &FnDecl) { for arg in &decl.inputs { check_type(cx, &arg.ty); } if let Return(ref ty) = decl.output { check_type(cx, ty); } } fn check_type(cx: &Context, ty: &Ty) { if in_macro(cx, ty.span) { return; } let score = { let mut visitor = TypeComplexityVisitor { score: 0, nest: 1 }; visitor.visit_ty(ty); visitor.score }; // println!("{:?} --> {}", ty, score); if score > 250 { span_lint(cx, TYPE_COMPLEXITY, ty.span, &format!( "very complex type used. Consider factoring parts into `type` definitions")); } } /// Walks a type and assigns a complexity score to it. struct TypeComplexityVisitor { /// total complexity score of the type score: u32, /// current nesting level nest: u32, } impl<'v> Visitor<'v> for TypeComplexityVisitor { fn visit_ty(&mut self, ty: &'v Ty) { let (add_score, sub_nest) = match ty.node { // _, &x and *x have only small overhead; don't mess with nesting level TyInfer | TyPtr(..) | TyRptr(..) => (1, 0), // the "normal" components of a type: named types, arrays/tuples TyPath(..) | TyVec(..) | TyTup(..) | TyFixedLengthVec(..) => (10 * self.nest, 1), // "Sum" of trait bounds TyObjectSum(..) => (20 * self.nest, 0), // function types and "for<...>" bring a lot of overhead TyBareFn(..) | TyPolyTraitRef(..) => (50 * self.nest, 1), _ => (0, 0) }; self.score += add_score; self.nest += sub_nest; walk_ty(self, ty); self.nest -= sub_nest; } }