// The Rust abstract syntax tree. import std::option; import std::str; import codemap::span; import codemap::filename; type spanned[T] = {node: T, span: span}; fn respan[T](sp: &span, t: &T) -> spanned[T] { ret {node: t, span: sp}; } /* assuming that we're not in macro expansion */ fn mk_sp(lo: uint, hi: uint) -> span { ret {lo: lo, hi: hi, expanded_from: codemap::os_none}; } // make this a const, once the compiler supports it fn dummy_sp() -> span { ret mk_sp(0u, 0u); } type ident = str; // Functions may or may not have names. type fn_ident = option::t[ident]; // FIXME: with typestate constraint, could say // idents and types are the same length, and are // non-empty type path_ = {global: bool, idents: [ident], types: [@ty]}; type path = spanned[path_]; fn path_name(p: &path) -> str { path_name_i(p.node.idents) } fn path_name_i(idents: &[ident]) -> str { str::connect(idents, "::") } type crate_num = int; type node_id = int; type def_id = {crate: crate_num, node: node_id}; const local_crate: crate_num = 0; fn local_def(id: node_id) -> def_id { ret {crate: local_crate, node: id}; } type ty_param = {ident: ident, kind: kind}; tag def { def_fn(def_id, purity); def_obj_field(def_id); def_mod(def_id); def_native_mod(def_id); def_const(def_id); def_arg(def_id); def_local(def_id); def_variant(def_id, /* tag */def_id); /* variant */ def_ty(def_id); def_ty_arg(uint, kind); def_binding(def_id); def_use(def_id); def_native_ty(def_id); def_native_fn(def_id); /* A "fake" def for upvars. This never appears in the def_map, but * freevars::def_lookup will return it for a def that is an upvar. * It contains the actual def. */ def_upvar(def_id, @def); } fn variant_def_ids(d: &def) -> {tg: def_id, var: def_id} { alt d { def_variant(tag_id, var_id) { ret {tg: tag_id, var: var_id}; } } } fn def_id_of_def(d: def) -> def_id { alt d { def_fn(id, _) { ret id; } def_obj_field(id) { ret id; } def_mod(id) { ret id; } def_native_mod(id) { ret id; } def_const(id) { ret id; } def_arg(id) { ret id; } def_local(id) { ret id; } def_variant(_, id) { ret id; } def_ty(id) { ret id; } def_ty_arg(_,_) { fail; } def_binding(id) { ret id; } def_use(id) { ret id; } def_native_ty(id) { ret id; } def_native_fn(id) { ret id; } def_upvar(id, _) { ret id; } } } // The set of meta_items that define the compilation environment of the crate, // used to drive conditional compilation type crate_cfg = [@meta_item]; type crate = spanned[crate_]; type crate_ = {directives: [@crate_directive], module: _mod, attrs: [attribute], config: crate_cfg}; tag crate_directive_ { cdir_src_mod(ident, option::t[filename], [attribute]); cdir_dir_mod(ident, option::t[filename], [@crate_directive], [attribute]); cdir_view_item(@view_item); cdir_syntax(path); cdir_auth(path, _auth); } type crate_directive = spanned[crate_directive_]; type meta_item = spanned[meta_item_]; tag meta_item_ { meta_word(ident); meta_list(ident, [@meta_item]); meta_name_value(ident, lit); } type blk = spanned[blk_]; type blk_ = {stmts: [@stmt], expr: option::t[@expr], id: node_id}; type pat = {id: node_id, node: pat_, span: span}; type field_pat = {ident: ident, pat: @pat}; tag pat_ { pat_wild; pat_bind(ident); pat_lit(@lit); pat_tag(path, [@pat]); pat_rec([field_pat], bool); pat_tup([@pat]); pat_box(@pat); } type pat_id_map = std::map::hashmap[str, ast::node_id]; // This is used because same-named variables in alternative patterns need to // use the node_id of their namesake in the first pattern. fn pat_id_map(pat: &@pat) -> pat_id_map { let map = std::map::new_str_hash[node_id](); for each bound in pat_bindings(pat) { let name = alt bound.node { pat_bind(n) { n } }; map.insert(name, bound.id); } ret map; } iter pat_bindings(pat: &@pat) -> @pat { alt pat.node { pat_bind(_) { put pat; } pat_tag(_, sub) { for p in sub { for each b in pat_bindings(p) { put b; } } } pat_rec(fields, _) { for f in fields { for each b in pat_bindings(f.pat) { put b; } } } pat_tup(elts) { for elt in elts { for each b in pat_bindings(elt) { put b; } } } pat_box(sub) { for each b in pat_bindings(sub) { put b; } } pat_wild. | pat_lit(_) {} } } fn pat_binding_ids(pat: &@pat) -> [node_id] { let found = ~[]; for each b in pat_bindings(pat) { found += ~[b.id]; } ret found; } tag mutability { mut; imm; maybe_mut; } tag kind { kind_pinned; kind_shared; kind_unique; } tag _auth { auth_unsafe; } tag proto { proto_iter; proto_fn; proto_block; proto_closure; } tag binop { add; sub; mul; div; rem; and; or; bitxor; bitand; bitor; lsl; lsr; asr; eq; lt; le; ne; ge; gt; } fn binop_to_str(op: binop) -> str { alt op { add. { ret "+"; } sub. { ret "-"; } mul. { ret "*"; } div. { ret "/"; } rem. { ret "%"; } and. { ret "&&"; } or. { ret "||"; } bitxor. { ret "^"; } bitand. { ret "&"; } bitor. { ret "|"; } lsl. { ret "<<"; } lsr. { ret ">>"; } asr. { ret ">>>"; } eq. { ret "=="; } lt. { ret "<"; } le. { ret "<="; } ne. { ret "!="; } ge. { ret ">="; } gt. { ret ">"; } } } pred lazy_binop(b: binop) -> bool { alt b { and. { true } or. { true } _ { false } } } tag unop { box(mutability); deref; not; neg; } fn unop_to_str(op: unop) -> str { alt op { box(mt) { if mt == mut { ret "@mutable "; } ret "@"; } deref. { ret "*"; } not. { ret "!"; } neg. { ret "-"; } } } tag mode { val; alias(bool); move; } type stmt = spanned[stmt_]; tag stmt_ { stmt_decl(@decl, node_id); stmt_expr(@expr, node_id); // These only exist in crate-level blocks. stmt_crate_directive(@crate_directive); } tag init_op { init_assign; init_move; } type initializer = {op: init_op, expr: @expr}; type local_ = {ty: @ty, pat: @pat, init: option::t[initializer], id: node_id}; type local = spanned[local_]; type decl = spanned[decl_]; tag decl_ { decl_local([@local]); decl_item(@item); } type arm = {pats: [@pat], body: blk}; type field_ = {mut: mutability, ident: ident, expr: @expr}; type field = spanned[field_]; tag spawn_dom { dom_implicit; dom_thread; } tag check_mode { checked; unchecked; } // FIXME: temporary tag seq_kind { sk_unique; sk_rc; } type expr = {id: node_id, node: expr_, span: span}; tag expr_ { expr_vec([@expr], mutability, seq_kind); expr_rec([field], option::t[@expr]); expr_call(@expr, [@expr]); expr_tup([@expr]); expr_self_method(ident); expr_bind(@expr, [option::t[@expr]]); expr_binary(binop, @expr, @expr); expr_unary(unop, @expr); expr_lit(@lit); expr_cast(@expr, @ty); expr_if(@expr, blk, option::t[@expr]); expr_ternary(@expr, @expr, @expr); expr_while(@expr, blk); expr_for(@local, @expr, blk); expr_for_each(@local, @expr, blk); expr_do_while(blk, @expr); expr_alt(@expr, [arm]); expr_fn(_fn); expr_block(blk); /* * FIXME: many of these @exprs should be constrained with * is_lval once we have constrained types working. */ expr_copy(@expr); expr_move(@expr, @expr); expr_assign(@expr, @expr); expr_swap(@expr, @expr); expr_assign_op(binop, @expr, @expr); expr_field(@expr, ident); expr_index(@expr, @expr); expr_path(path); expr_fail(option::t[@expr]); expr_break; expr_cont; expr_ret(option::t[@expr]); expr_put(option::t[@expr]); expr_be(@expr); expr_log(int, @expr); /* just an assert, no significance to typestate */ expr_assert(@expr); /* preds that typestate is aware of */ expr_check(check_mode, @expr); /* FIXME Would be nice if expr_check desugared to expr_if_check. */ expr_if_check(@expr, blk, option::t[@expr]); expr_anon_obj(anon_obj); expr_mac(mac); expr_uniq(@expr); } type mac = spanned[mac_]; tag mac_ { mac_invoc(path, @expr, option::t[str]); mac_embed_type(@ty); mac_embed_block(blk); mac_ellipsis; } type lit = spanned[lit_]; tag lit_ { lit_str(str, seq_kind); lit_char(char); lit_int(int); lit_uint(uint); lit_mach_int(ty_mach, int); lit_float(str); lit_mach_float(ty_mach, str); lit_nil; lit_bool(bool); } fn is_path(e: &@expr) -> bool { ret alt e.node { expr_path(_) { true } _ { false } }; } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. type mt = {ty: @ty, mut: mutability}; type ty_field_ = {ident: ident, mt: mt}; type ty_arg_ = {mode: mode, ty: @ty}; type ty_method_ = {proto: proto, ident: ident, inputs: [ty_arg], output: @ty, cf: controlflow, constrs: [@constr]}; type ty_field = spanned[ty_field_]; type ty_arg = spanned[ty_arg_]; type ty_method = spanned[ty_method_]; tag ty_mach { ty_i8; ty_i16; ty_i32; ty_i64; ty_u8; ty_u16; ty_u32; ty_u64; ty_f32; ty_f64; } fn ty_mach_to_str(tm: ty_mach) -> str { alt tm { ty_u8. { ret "u8"; } ty_u16. { ret "u16"; } ty_u32. { ret "u32"; } ty_u64. { ret "u64"; } ty_i8. { ret "i8"; } ty_i16. { ret "i16"; } ty_i32. { ret "i32"; } ty_i64. { ret "i64"; } ty_f32. { ret "f32"; } ty_f64. { ret "f64"; } } } type ty = spanned[ty_]; tag ty_ { ty_nil; ty_bot; /* return type of ! functions and type of ret/fail/break/cont. there is no syntax for this type. */ /* bot represents the value of functions that don't return a value locally to their context. in contrast, things like log that do return, but don't return a meaningful value, have result type nil. */ ty_bool; ty_int; ty_uint; ty_float; ty_machine(ty_mach); ty_char; ty_str; ty_istr; // interior string ty_box(mt); ty_vec(mt); ty_ivec(mt); // interior vector ty_ptr(mt); ty_task; ty_port(@ty); ty_chan(@ty); ty_rec([ty_field]); ty_fn(proto, [ty_arg], @ty, controlflow, [@constr]); ty_obj([ty_method]); ty_tup([@ty]); ty_path(path, node_id); ty_type; ty_constr(@ty, [@ty_constr]); ty_mac(mac); // ty_infer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. ty_infer; } /* A constraint arg that's a function argument is referred to by its position rather than name. This is so we could have higher-order functions that have constraints (potentially -- right now there's no way to write that), and also so that the typestate pass doesn't have to map a function name onto its decl. So, the constr_arg type is parameterized: it's instantiated with uint for declarations, and ident for uses. */ tag constr_arg_general_[T] { carg_base; carg_ident(T); carg_lit(@lit); } type fn_constr_arg = constr_arg_general_[uint]; type sp_constr_arg[T] = spanned[constr_arg_general_[T]]; type ty_constr_arg = sp_constr_arg[path]; type constr_arg = spanned[fn_constr_arg]; // Constrained types' args are parameterized by paths, since // we refer to paths directly and not by indices. // The implicit root of such path, in the constraint-list for a // constrained type, is * (referring to the base record) type constr_general_[ARG, ID] = {path: path, args: [@spanned[constr_arg_general_[ARG]]], id: ID}; // In the front end, constraints have a node ID attached. // Typeck turns this to a def_id, using the output of resolve. type constr_general[ARG] = spanned[constr_general_[ARG, node_id]]; type constr_ = constr_general_[uint, node_id]; type constr = spanned[constr_general_[uint, node_id]]; type ty_constr_ = ast::constr_general_[ast::path, ast::node_id]; type ty_constr = spanned[ty_constr_]; /* The parser generates ast::constrs; resolve generates a mapping from each function to a list of ty::constr_defs, corresponding to these. */ type arg = {mode: mode, ty: @ty, ident: ident, id: node_id}; tag inlineness { il_normal; il_inline; } type fn_decl = {inputs: [arg], output: @ty, purity: purity, il: inlineness, cf: controlflow, constraints: [@constr]}; tag purity { pure_fn; // declared with "pred" impure_fn; // declared with "fn" } tag controlflow { noreturn; // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return; // everything else } type _fn = {decl: fn_decl, proto: proto, body: blk}; type method_ = {ident: ident, meth: _fn, id: node_id}; type method = spanned[method_]; type obj_field = {mut: mutability, ty: @ty, ident: ident, id: node_id}; type anon_obj_field = {mut: mutability, ty: @ty, expr: @expr, ident: ident, id: node_id}; type _obj = {fields: [obj_field], methods: [@method]}; type anon_obj = // New fields and methods, if they exist. {fields: option::t[[anon_obj_field]], methods: [@method], // inner_obj: the original object being extended, if it exists. inner_obj: option::t[@expr]}; type _mod = {view_items: [@view_item], items: [@item]}; tag native_abi { native_abi_rust; native_abi_cdecl; native_abi_llvm; native_abi_rust_intrinsic; native_abi_x86stdcall; } type native_mod = {native_name: str, abi: native_abi, view_items: [@view_item], items: [@native_item]}; type variant_arg = {ty: @ty, id: node_id}; type variant_ = {name: str, args: [variant_arg], id: node_id}; type variant = spanned[variant_]; type view_item = spanned[view_item_]; tag view_item_ { view_item_use(ident, [@meta_item], node_id); view_item_import(ident, [ident], node_id); view_item_import_glob([ident], node_id); view_item_export(ident, node_id); } type obj_def_ids = {ty: node_id, ctor: node_id}; // Meta-data associated with an item type attribute = spanned[attribute_]; // Distinguishes between attributes that decorate items and attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. tag attr_style { attr_outer; attr_inner; } type attribute_ = {style: attr_style, value: meta_item}; type item = // For objs and resources, this is the type def_id {ident: ident, attrs: [attribute], id: node_id, node: item_, span: span}; tag item_ { item_const(@ty, @expr); item_fn(_fn, [ty_param]); item_mod(_mod); item_native_mod(native_mod); item_ty(@ty, [ty_param]); item_tag([variant], [ty_param]); item_obj(_obj, [ty_param], /* constructor id */node_id); item_res(_fn, /* dtor */ node_id, /* dtor id */ [ty_param], node_id /* ctor id */); } type native_item = {ident: ident, attrs: [attribute], node: native_item_, id: node_id, span: span}; tag native_item_ { native_item_ty; native_item_fn(option::t[str], fn_decl, [ty_param]); } fn is_exported(i: ident, m: _mod) -> bool { let nonlocal = true; for it: @ast::item in m.items { if it.ident == i { nonlocal = false; } alt it.node { item_tag(variants, _) { for v: variant in variants { if v.node.name == i { nonlocal = false; } } } _ { } } if !nonlocal { break; } } let count = 0u; for vi: @ast::view_item in m.view_items { alt vi.node { ast::view_item_export(id, _) { if str::eq(i, id) { // even if it's nonlocal (since it's explicit) ret true; } count += 1u; } _ {/* fall through */ } } } // If there are no declared exports then // everything not imported is exported ret count == 0u && !nonlocal; } fn is_call_expr(e: @expr) -> bool { alt e.node { expr_call(_, _) { ret true; } _ { ret false; } } } fn is_constraint_arg(e: @expr) -> bool { alt e.node { expr_lit(_) { ret true; } expr_path(_) { ret true; } _ { ret false; } } } fn eq_ty(a: &@ty, b: &@ty) -> bool { ret std::box::ptr_eq(a, b); } fn hash_ty(t: &@ty) -> uint { ret t.span.lo << 16u + t.span.hi; } fn block_from_expr(e: @expr) -> blk { let blk_ = {stmts: ~[], expr: option::some[@expr](e), id: e.id}; ret {node: blk_, span: e.span}; } fn obj_field_from_anon_obj_field(f: &anon_obj_field) -> obj_field { ret {mut: f.mut, ty: f.ty, ident: f.ident, id: f.id}; } // This is a convenience function to transfor ternary expressions to if // expressions so that they can be treated the same fn ternary_to_if(e: &@expr) -> @ast::expr { alt e.node { expr_ternary(cond, then, els) { let then_blk = block_from_expr(then); let els_blk = block_from_expr(els); let els_expr = @{id: els.id, node: expr_block(els_blk), span: els.span}; ret @{id: e.id, node: expr_if(cond, then_blk, option::some(els_expr)), span: e.span}; } _ { fail; } } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //