/// Lookup hir elements using positions in the source code. This is a lossy /// transformation: in general, a single source might correspond to several /// modules, functions, etc, due to macros, cfgs and `#[path=]` attributes on /// modules. /// /// So, this modules should not be used during hir construction, it exists /// purely for "IDE needs". use std::sync::Arc; use ra_db::{FileId, FilePosition}; use ra_syntax::{ algo::find_node_at_offset, ast::{self, AstNode, NameOwner}, AstPtr, SyntaxKind::*, SyntaxNode, SyntaxNodePtr, TextRange, TextUnit, }; use rustc_hash::{FxHashMap, FxHashSet}; use crate::{ expr::{ self, scope::{ExprScopes, ScopeId}, BodySourceMap, }, ids::LocationCtx, name, path::{PathKind, PathSegment}, ty::method_resolution::implements_trait, AsName, AstId, Const, Crate, DefWithBody, Either, Enum, Function, HirDatabase, HirFileId, MacroDef, Module, ModuleDef, Name, Path, PerNs, Resolution, Resolver, Static, Struct, Trait, Ty, }; /// Locates the module by `FileId`. Picks topmost module in the file. pub fn module_from_file_id(db: &impl HirDatabase, file_id: FileId) -> Option { module_from_source(db, file_id.into(), None) } /// Locates the child module by `mod child;` declaration. pub fn module_from_declaration( db: &impl HirDatabase, file_id: FileId, decl: ast::Module, ) -> Option { let parent_module = module_from_file_id(db, file_id); let child_name = decl.name(); match (parent_module, child_name) { (Some(parent_module), Some(child_name)) => parent_module.child(db, &child_name.as_name()), _ => None, } } /// Locates the module by position in the source code. pub fn module_from_position(db: &impl HirDatabase, position: FilePosition) -> Option { let parse = db.parse(position.file_id); match &find_node_at_offset::(parse.tree().syntax(), position.offset) { Some(m) if !m.has_semi() => module_from_inline(db, position.file_id, m.clone()), _ => module_from_file_id(db, position.file_id), } } fn module_from_inline( db: &impl HirDatabase, file_id: FileId, module: ast::Module, ) -> Option { assert!(!module.has_semi()); let file_id = file_id.into(); let ast_id_map = db.ast_id_map(file_id); let item_id = ast_id_map.ast_id(&module).with_file_id(file_id); module_from_source(db, file_id, Some(item_id)) } /// Locates the module by child syntax element within the module pub fn module_from_child_node( db: &impl HirDatabase, file_id: FileId, child: &SyntaxNode, ) -> Option { if let Some(m) = child.ancestors().filter_map(ast::Module::cast).find(|it| !it.has_semi()) { module_from_inline(db, file_id, m) } else { module_from_file_id(db, file_id) } } fn module_from_source( db: &impl HirDatabase, file_id: HirFileId, decl_id: Option>, ) -> Option { let source_root_id = db.file_source_root(file_id.as_original_file()); db.source_root_crates(source_root_id).iter().map(|&crate_id| Crate { crate_id }).find_map( |krate| { let def_map = db.crate_def_map(krate); let module_id = def_map.find_module_by_source(file_id, decl_id)?; Some(Module { krate, module_id }) }, ) } pub fn struct_from_module( db: &impl HirDatabase, module: Module, struct_def: &ast::StructDef, ) -> Struct { let file_id = module.definition_source(db).file_id; let ctx = LocationCtx::new(db, module, file_id); Struct { id: ctx.to_def(struct_def) } } pub fn enum_from_module(db: &impl HirDatabase, module: Module, enum_def: &ast::EnumDef) -> Enum { let file_id = module.definition_source(db).file_id; let ctx = LocationCtx::new(db, module, file_id); Enum { id: ctx.to_def(enum_def) } } pub fn trait_from_module( db: &impl HirDatabase, module: Module, trait_def: &ast::TraitDef, ) -> Trait { let file_id = module.definition_source(db).file_id; let ctx = LocationCtx::new(db, module, file_id); Trait { id: ctx.to_def(trait_def) } } fn try_get_resolver_for_node( db: &impl HirDatabase, file_id: FileId, node: &SyntaxNode, ) -> Option { if let Some(module) = ast::Module::cast(node.clone()) { Some(module_from_declaration(db, file_id, module)?.resolver(db)) } else if let Some(_) = ast::SourceFile::cast(node.clone()) { Some(module_from_source(db, file_id.into(), None)?.resolver(db)) } else if let Some(s) = ast::StructDef::cast(node.clone()) { let module = module_from_child_node(db, file_id, s.syntax())?; Some(struct_from_module(db, module, &s).resolver(db)) } else if let Some(e) = ast::EnumDef::cast(node.clone()) { let module = module_from_child_node(db, file_id, e.syntax())?; Some(enum_from_module(db, module, &e).resolver(db)) } else if node.kind() == FN_DEF || node.kind() == CONST_DEF || node.kind() == STATIC_DEF { Some(def_with_body_from_child_node(db, file_id, node)?.resolver(db)) } else { // FIXME add missing cases None } } fn def_with_body_from_child_node( db: &impl HirDatabase, file_id: FileId, node: &SyntaxNode, ) -> Option { let module = module_from_child_node(db, file_id, node)?; let ctx = LocationCtx::new(db, module, file_id.into()); node.ancestors().find_map(|node| { if let Some(def) = ast::FnDef::cast(node.clone()) { return Some(Function { id: ctx.to_def(&def) }.into()); } if let Some(def) = ast::ConstDef::cast(node.clone()) { return Some(Const { id: ctx.to_def(&def) }.into()); } if let Some(def) = ast::StaticDef::cast(node.clone()) { return Some(Static { id: ctx.to_def(&def) }.into()); } None }) } /// `SourceAnalyzer` is a convenience wrapper which exposes HIR API in terms of /// original source files. It should not be used inside the HIR itself. #[derive(Debug)] pub struct SourceAnalyzer { resolver: Resolver, body_source_map: Option>, infer: Option>, scopes: Option>, } #[derive(Debug, Clone, PartialEq, Eq)] pub enum PathResolution { /// An item Def(crate::ModuleDef), /// A local binding (only value namespace) LocalBinding(Either, AstPtr>), /// A generic parameter GenericParam(u32), SelfType(crate::ImplBlock), Macro(MacroDef), AssocItem(crate::ImplItem), } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ScopeEntryWithSyntax { pub(crate) name: Name, pub(crate) ptr: Either, AstPtr>, } impl ScopeEntryWithSyntax { pub fn name(&self) -> &Name { &self.name } pub fn ptr(&self) -> Either, AstPtr> { self.ptr } } #[derive(Debug)] pub struct ReferenceDescriptor { pub range: TextRange, pub name: String, } impl SourceAnalyzer { pub fn new( db: &impl HirDatabase, file_id: FileId, node: &SyntaxNode, offset: Option, ) -> SourceAnalyzer { let def_with_body = def_with_body_from_child_node(db, file_id, node); if let Some(def) = def_with_body { let source_map = def.body_source_map(db); let scopes = db.expr_scopes(def); let scope = match offset { None => scope_for(&scopes, &source_map, &node), Some(offset) => scope_for_offset(&scopes, &source_map, offset), }; let resolver = expr::resolver_for_scope(def.body(db), db, scope); SourceAnalyzer { resolver, body_source_map: Some(source_map), infer: Some(def.infer(db)), scopes: Some(scopes), } } else { SourceAnalyzer { resolver: node .ancestors() .find_map(|node| try_get_resolver_for_node(db, file_id, &node)) .unwrap_or_default(), body_source_map: None, infer: None, scopes: None, } } } pub fn type_of(&self, _db: &impl HirDatabase, expr: &ast::Expr) -> Option { let expr_id = self.body_source_map.as_ref()?.node_expr(expr)?; Some(self.infer.as_ref()?[expr_id].clone()) } pub fn type_of_pat(&self, _db: &impl HirDatabase, pat: &ast::Pat) -> Option { let pat_id = self.body_source_map.as_ref()?.node_pat(pat)?; Some(self.infer.as_ref()?[pat_id].clone()) } pub fn type_of_pat_by_id( &self, _db: &impl HirDatabase, pat_id: expr::PatId, ) -> Option { Some(self.infer.as_ref()?[pat_id].clone()) } pub fn resolve_method_call(&self, call: &ast::MethodCallExpr) -> Option { let expr_id = self.body_source_map.as_ref()?.node_expr(&call.clone().into())?; self.infer.as_ref()?.method_resolution(expr_id) } pub fn resolve_field(&self, field: &ast::FieldExpr) -> Option { let expr_id = self.body_source_map.as_ref()?.node_expr(&field.clone().into())?; self.infer.as_ref()?.field_resolution(expr_id) } pub fn resolve_struct_literal(&self, struct_lit: &ast::StructLit) -> Option { let expr_id = self.body_source_map.as_ref()?.node_expr(&struct_lit.clone().into())?; self.infer.as_ref()?.variant_resolution_for_expr(expr_id) } pub fn resolve_struct_pattern(&self, struct_pat: &ast::StructPat) -> Option { let pat_id = self.body_source_map.as_ref()?.node_pat(&struct_pat.clone().into())?; self.infer.as_ref()?.variant_resolution_for_pat(pat_id) } pub fn resolve_macro_call( &self, db: &impl HirDatabase, macro_call: &ast::MacroCall, ) -> Option { let path = macro_call.path().and_then(Path::from_ast)?; self.resolver.resolve_path_as_macro(db, &path) } pub fn resolve_hir_path( &self, db: &impl HirDatabase, path: &crate::Path, ) -> PerNs { self.resolver.resolve_path_without_assoc_items(db, path) } pub fn resolve_path(&self, db: &impl HirDatabase, path: &ast::Path) -> Option { if let Some(path_expr) = path.syntax().parent().and_then(ast::PathExpr::cast) { let expr_id = self.body_source_map.as_ref()?.node_expr(&path_expr.into())?; if let Some(assoc) = self.infer.as_ref()?.assoc_resolutions_for_expr(expr_id) { return Some(PathResolution::AssocItem(assoc)); } } if let Some(path_pat) = path.syntax().parent().and_then(ast::PathPat::cast) { let pat_id = self.body_source_map.as_ref()?.node_pat(&path_pat.into())?; if let Some(assoc) = self.infer.as_ref()?.assoc_resolutions_for_pat(pat_id) { return Some(PathResolution::AssocItem(assoc)); } } let hir_path = crate::Path::from_ast(path.clone())?; let res = self.resolver.resolve_path_without_assoc_items(db, &hir_path); let res = res.clone().take_types().or_else(|| res.take_values())?; let res = match res { crate::Resolution::Def(it) => PathResolution::Def(it), crate::Resolution::LocalBinding(it) => { // We get a `PatId` from resolver, but it actually can only // point at `BindPat`, and not at the arbitrary pattern. let pat_ptr = self .body_source_map .as_ref()? .pat_syntax(it)? .map_a(|ptr| ptr.cast::().unwrap()); PathResolution::LocalBinding(pat_ptr) } crate::Resolution::GenericParam(it) => PathResolution::GenericParam(it), crate::Resolution::SelfType(it) => PathResolution::SelfType(it), }; Some(res) } pub fn resolve_local_name(&self, name_ref: &ast::NameRef) -> Option { let mut shadowed = FxHashSet::default(); let name = name_ref.as_name(); let source_map = self.body_source_map.as_ref()?; let scopes = self.scopes.as_ref()?; let scope = scope_for(scopes, source_map, name_ref.syntax()); let ret = scopes .scope_chain(scope) .flat_map(|scope| scopes.entries(scope).iter()) .filter(|entry| shadowed.insert(entry.name())) .filter(|entry| entry.name() == &name) .nth(0); ret.and_then(|entry| { Some(ScopeEntryWithSyntax { name: entry.name().clone(), ptr: source_map.pat_syntax(entry.pat())?, }) }) } pub fn all_names(&self, db: &impl HirDatabase) -> FxHashMap> { self.resolver.all_names(db) } pub fn find_all_refs(&self, pat: &ast::BindPat) -> Vec { // FIXME: at least, this should work with any DefWithBody, but ideally // this should be hir-based altogether let fn_def = pat.syntax().ancestors().find_map(ast::FnDef::cast).unwrap(); let ptr = Either::A(AstPtr::new(&ast::Pat::from(pat.clone()))); fn_def .syntax() .descendants() .filter_map(ast::NameRef::cast) .filter(|name_ref| match self.resolve_local_name(&name_ref) { None => false, Some(entry) => entry.ptr() == ptr, }) .map(|name_ref| ReferenceDescriptor { name: name_ref.text().to_string(), range: name_ref.syntax().text_range(), }) .collect() } pub fn iterate_method_candidates( &self, db: &impl HirDatabase, ty: Ty, name: Option<&Name>, callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { // There should be no inference vars in types passed here // FIXME check that? let canonical = crate::ty::Canonical { value: ty, num_vars: 0 }; crate::ty::method_resolution::iterate_method_candidates( &canonical, db, &self.resolver, name, callback, ) } pub fn autoderef<'a>( &'a self, db: &'a impl HirDatabase, ty: Ty, ) -> impl Iterator + 'a { // There should be no inference vars in types passed here // FIXME check that? let canonical = crate::ty::Canonical { value: ty, num_vars: 0 }; crate::ty::autoderef(db, &self.resolver, canonical).map(|canonical| canonical.value) } /// Checks that particular type `ty` implements `std::future::Future`. /// This function is used in `.await` syntax completion. pub fn impls_future(&self, db: &impl HirDatabase, ty: Ty) -> bool { let std_future_path = Path { kind: PathKind::Abs, segments: vec![ PathSegment { name: name::STD, args_and_bindings: None }, PathSegment { name: name::FUTURE_MOD, args_and_bindings: None }, PathSegment { name: name::FUTURE_TYPE, args_and_bindings: None }, ], }; let std_future_trait = match self.resolver.resolve_path_segments(db, &std_future_path).into_fully_resolved() { PerNs { types: Some(Resolution::Def(ModuleDef::Trait(trait_))), .. } => { trait_ } _ => return false, }; let krate = match self.resolver.krate() { Some(krate) => krate, _ => return false, }; let canonical_ty = crate::ty::Canonical { value: ty, num_vars: 0 }; implements_trait(&canonical_ty, db, &self.resolver, krate, std_future_trait) } #[cfg(test)] pub(crate) fn body_source_map(&self) -> Arc { self.body_source_map.clone().unwrap() } #[cfg(test)] pub(crate) fn inference_result(&self) -> Arc { self.infer.clone().unwrap() } #[cfg(test)] pub(crate) fn scopes(&self) -> Arc { self.scopes.clone().unwrap() } } fn scope_for( scopes: &ExprScopes, source_map: &BodySourceMap, node: &SyntaxNode, ) -> Option { node.ancestors() .map(|it| SyntaxNodePtr::new(&it)) .filter_map(|ptr| source_map.syntax_expr(ptr)) .find_map(|it| scopes.scope_for(it)) } fn scope_for_offset( scopes: &ExprScopes, source_map: &BodySourceMap, offset: TextUnit, ) -> Option { scopes .scope_by_expr() .iter() .filter_map(|(id, scope)| Some((source_map.expr_syntax(*id)?, scope))) // find containing scope .min_by_key(|(ptr, _scope)| { (!(ptr.range().start() <= offset && offset <= ptr.range().end()), ptr.range().len()) }) .map(|(ptr, scope)| adjust(scopes, source_map, ptr, offset).unwrap_or(*scope)) } // XXX: during completion, cursor might be outside of any particular // expression. Try to figure out the correct scope... fn adjust( scopes: &ExprScopes, source_map: &BodySourceMap, ptr: SyntaxNodePtr, offset: TextUnit, ) -> Option { let r = ptr.range(); let child_scopes = scopes .scope_by_expr() .iter() .filter_map(|(id, scope)| Some((source_map.expr_syntax(*id)?, scope))) .map(|(ptr, scope)| (ptr.range(), scope)) .filter(|(range, _)| range.start() <= offset && range.is_subrange(&r) && *range != r); child_scopes .max_by(|(r1, _), (r2, _)| { if r2.is_subrange(&r1) { std::cmp::Ordering::Greater } else if r1.is_subrange(&r2) { std::cmp::Ordering::Less } else { r1.start().cmp(&r2.start()) } }) .map(|(_ptr, scope)| *scope) }