use std::cell::RefCell; use std::collections::{HashMap, HashSet}; use std::rc::Rc; use std::fmt; use std::num::NonZeroU64; use rustc::ty::{self, layout::Size}; use rustc::hir::{MutMutable, MutImmutable}; use rustc::mir::RetagKind; use crate::{ InterpResult, InterpError, MiriEvalContext, HelpersEvalContextExt, Evaluator, MutValueVisitor, MemoryKind, MiriMemoryKind, RangeMap, AllocId, Pointer, Immediate, ImmTy, PlaceTy, MPlaceTy, }; pub type PtrId = NonZeroU64; pub type CallId = NonZeroU64; pub type AllocExtra = Stacks; /// Tracking pointer provenance #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub enum Tag { Tagged(PtrId), Untagged, } impl fmt::Debug for Tag { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { Tag::Tagged(id) => write!(f, "<{}>", id), Tag::Untagged => write!(f, ""), } } } /// Indicates which permission is granted (by this item to some pointers) #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum Permission { /// Grants unique mutable access. Unique, /// Grants shared mutable access. SharedReadWrite, /// Grants shared read-only access. SharedReadOnly, /// Grants no access, but separates two groups of SharedReadWrite so they are not /// all considered mutually compatible. Disabled, } /// An item in the per-location borrow stack. #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub struct Item { /// The permission this item grants. perm: Permission, /// The pointers the permission is granted to. tag: Tag, /// An optional protector, ensuring the item cannot get popped until `CallId` is over. protector: Option, } impl fmt::Debug for Item { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "[{:?} for {:?}", self.perm, self.tag)?; if let Some(call) = self.protector { write!(f, " (call {})", call)?; } write!(f, "]")?; Ok(()) } } /// Extra per-location state. #[derive(Clone, Debug, PartialEq, Eq)] pub struct Stack { /// Used *mostly* as a stack; never empty. /// Invariants: /// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`. /// * Except for `Untagged`, no tag occurs in the stack more than once. borrows: Vec, } /// Extra per-allocation state. #[derive(Clone, Debug)] pub struct Stacks { // Even reading memory can have effects on the stack, so we need a `RefCell` here. stacks: RefCell>, // Pointer to global state global: MemoryExtra, } /// Extra global state, available to the memory access hooks. #[derive(Debug)] pub struct GlobalState { /// Next unused pointer ID (tag). next_ptr_id: PtrId, /// Table storing the "base" tag for each allocation. /// The base tag is the one used for the initial pointer. /// We need this in a separate table to handle cyclic statics. base_ptr_ids: HashMap, /// Next unused call ID (for protectors). next_call_id: CallId, /// Those call IDs corresponding to functions that are still running. active_calls: HashSet, } /// Memory extra state gives us interior mutable access to the global state. pub type MemoryExtra = Rc>; /// Indicates which kind of access is being performed. #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub enum AccessKind { Read, Write, } impl fmt::Display for AccessKind { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { AccessKind::Read => write!(f, "read access"), AccessKind::Write => write!(f, "write access"), } } } /// Indicates which kind of reference is being created. /// Used by high-level `reborrow` to compute which permissions to grant to the /// new pointer. #[derive(Copy, Clone, Hash, PartialEq, Eq)] pub enum RefKind { /// `&mut` and `Box`. Unique { two_phase: bool }, /// `&` with or without interior mutability. Shared, /// `*mut`/`*const` (raw pointers). Raw { mutable: bool }, } impl fmt::Display for RefKind { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { RefKind::Unique { two_phase: false } => write!(f, "unique"), RefKind::Unique { two_phase: true } => write!(f, "unique (two-phase)"), RefKind::Shared => write!(f, "shared"), RefKind::Raw { mutable: true } => write!(f, "raw (mutable)"), RefKind::Raw { mutable: false } => write!(f, "raw (constant)"), } } } /// Utilities for initialization and ID generation impl Default for GlobalState { fn default() -> Self { GlobalState { next_ptr_id: NonZeroU64::new(1).unwrap(), base_ptr_ids: HashMap::default(), next_call_id: NonZeroU64::new(1).unwrap(), active_calls: HashSet::default(), } } } impl GlobalState { fn new_ptr(&mut self) -> PtrId { let id = self.next_ptr_id; self.next_ptr_id = NonZeroU64::new(id.get() + 1).unwrap(); id } pub fn new_call(&mut self) -> CallId { let id = self.next_call_id; trace!("new_call: Assigning ID {}", id); self.active_calls.insert(id); self.next_call_id = NonZeroU64::new(id.get() + 1).unwrap(); id } pub fn end_call(&mut self, id: CallId) { assert!(self.active_calls.remove(&id)); } fn is_active(&self, id: CallId) -> bool { self.active_calls.contains(&id) } pub fn static_base_ptr(&mut self, id: AllocId) -> Tag { self.base_ptr_ids.get(&id).copied().unwrap_or_else(|| { let tag = Tag::Tagged(self.new_ptr()); trace!("New allocation {:?} has base tag {:?}", id, tag); self.base_ptr_ids.insert(id, tag); tag }) } } // # Stacked Borrows Core Begin /// We need to make at least the following things true: /// /// U1: After creating a `Uniq`, it is at the top. /// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it it. /// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack. /// /// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top. /// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces: /// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly` /// gets popped. /// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`. /// F3: If an access happens with an `&` outside `UnsafeCell`, /// it requires the `SharedReadOnly` to still be in the stack. /// Core relation on `Permission` to define which accesses are allowed impl Permission { /// This defines for a given permission, whether it permits the given kind of access. fn grants(self, access: AccessKind) -> bool { // Disabled grants nothing. Otherwise, all items grant read access, and except for SharedReadOnly they grant write access. self != Permission::Disabled && (access == AccessKind::Read || self != Permission::SharedReadOnly) } } /// Core per-location operations: access, dealloc, reborrow. impl<'tcx> Stack { /// Find the item granting the given kind of access to the given tag, and return where /// it is on the stack. fn find_granting(&self, access: AccessKind, tag: Tag) -> Option { self.borrows.iter() .enumerate() // we also need to know *where* in the stack .rev() // search top-to-bottom // Return permission of first item that grants access. // We require a permission with the right tag, ensuring U3 and F3. .find_map(|(idx, item)| if tag == item.tag && item.perm.grants(access) { Some(idx) } else { None } ) } /// Find the first write-incompatible item above the given one -- /// i.e, find the height to which the stack will be truncated when writing to `granting`. fn find_first_write_incompaible(&self, granting: usize) -> usize { let perm = self.borrows[granting].perm; match perm { Permission::SharedReadOnly => bug!("Cannot use SharedReadOnly for writing"), Permission::Disabled => bug!("Cannot use Disabled for anything"), Permission::Unique => // On a write, everything above us is incompatible. granting + 1, Permission::SharedReadWrite => { // The SharedReadWrite *just* above us are compatible, to skip those. let mut idx = granting + 1; while let Some(item) = self.borrows.get(idx) { if item.perm == Permission::SharedReadWrite { // Go on. idx += 1; } else { // Found first incompatible! break; } } idx } } } /// Check if the given item is protected. fn check_protector(item: &Item, tag: Option, global: &GlobalState) -> InterpResult<'tcx> { if let Some(call) = item.protector { if global.is_active(call) { if let Some(tag) = tag { return err!(MachineError(format!( "not granting access to tag {:?} because incompatible item is protected: {:?}", tag, item ))); } else { return err!(MachineError(format!( "deallocating while item is protected: {:?}", item ))); } } } Ok(()) } /// Test if a memory `access` using pointer tagged `tag` is granted. /// If yes, return the index of the item that granted it. fn access( &mut self, access: AccessKind, tag: Tag, global: &GlobalState, ) -> InterpResult<'tcx> { // Two main steps: Find granting item, remove incompatible items above. // Step 1: Find granting item. let granting_idx = self.find_granting(access, tag) .ok_or_else(|| InterpError::MachineError(format!( "no item granting {} to tag {:?} found in borrow stack", access, tag, )))?; // Step 2: Remove incompatible items above them. Make sure we do not remove protected // items. Behavior differs for reads and writes. if access == AccessKind::Write { // Remove everything above the write-compatible items, like a proper stack. This makes sure read-only and unique // pointers become invalid on write accesses (ensures F2a, and ensures U2 for write accesses). let first_incompatible_idx = self.find_first_write_incompaible(granting_idx); for item in self.borrows.drain(first_incompatible_idx..).rev() { trace!("access: popping item {:?}", item); Stack::check_protector(&item, Some(tag), global)?; } } else { // On a read, *disable* all `Unique` above the granting item. This ensures U2 for read accesses. // The reason this is not following the stack discipline (by removing the first Unique and // everything on top of it) is that in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement // would pop the `Unique` from the reborrow of the first statement, and subsequently also pop the // `SharedReadWrite` for `raw`. // This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared // reference and use that. // We *disable* instead of removing `Unique` to avoid "connecting" two neighbouring blocks of SRWs. for idx in (granting_idx+1 .. self.borrows.len()).rev() { let item = &mut self.borrows[idx]; if item.perm == Permission::Unique { trace!("access: disabling item {:?}", item); Stack::check_protector(item, Some(tag), global)?; item.perm = Permission::Disabled; } } } // Done. Ok(()) } /// Deallocate a location: Like a write access, but also there must be no /// active protectors at all because we will remove all items. fn dealloc( &mut self, tag: Tag, global: &GlobalState, ) -> InterpResult<'tcx> { // Step 1: Find granting item. self.find_granting(AccessKind::Write, tag) .ok_or_else(|| InterpError::MachineError(format!( "no item granting write access for deallocation to tag {:?} found in borrow stack", tag, )))?; // Step 2: Remove all items. Also checks for protectors. for item in self.borrows.drain(..).rev() { Stack::check_protector(&item, None, global)?; } Ok(()) } /// Derived a new pointer from one with the given tag. /// `weak` controls whether this operation is weak or strong: weak granting does not act as /// an access, and they add the new item directly on top of the one it is derived /// from instead of all the way at the top of the stack. fn grant( &mut self, derived_from: Tag, new: Item, global: &GlobalState, ) -> InterpResult<'tcx> { // Figure out which access `perm` corresponds to. let access = if new.perm.grants(AccessKind::Write) { AccessKind::Write } else { AccessKind::Read }; // Now we figure out which item grants our parent (`derived_from`) this kind of access. // We use that to determine where to put the new item. let granting_idx = self.find_granting(access, derived_from) .ok_or_else(|| InterpError::MachineError(format!( "trying to reborrow for {:?}, but parent tag {:?} does not have an appropriate item in the borrow stack", new.perm, derived_from, )))?; // Compute where to put the new item. // Either way, we ensure that we insert the new item in a way such that between // `derived_from` and the new one, there are only items *compatible with* `derived_from`. let new_idx = if new.perm == Permission::SharedReadWrite { assert!(access == AccessKind::Write, "this case only makes sense for stack-like accesses"); // SharedReadWrite can coexist with "existing loans", meaning they don't act like a write // access. Instead of popping the stack, we insert the item at the place the stack would // be popped to (i.e., we insert it above all the write-compatible items). // This ensures F2b by adding the new item below any potentially existing `SharedReadOnly`. self.find_first_write_incompaible(granting_idx) } else { // A "safe" reborrow for a pointer that actually expects some aliasing guarantees. // Here, creating a reference actually counts as an access. // This ensures F2b for `Unique`, by removing offending `SharedReadOnly`. self.access(access, derived_from, global)?; // We insert "as far up as possible": We know only compatible items are remaining // on top of `derived_from`, and we want the new item at the top so that we // get the strongest possible guarantees. // This ensures U1 and F1. self.borrows.len() }; // Put the new item there. As an optimization, deduplicate if it is equal to one of its new neighbors. if self.borrows[new_idx-1] == new || self.borrows.get(new_idx) == Some(&new) { // Optimization applies, done. trace!("reborrow: avoiding adding redundant item {:?}", new); } else { trace!("reborrow: adding item {:?}", new); self.borrows.insert(new_idx, new); } Ok(()) } } // # Stacked Borrows Core End /// Map per-stack operations to higher-level per-location-range operations. impl<'tcx> Stacks { /// Creates new stack with initial tag. fn new( size: Size, perm: Permission, tag: Tag, extra: MemoryExtra, ) -> Self { let item = Item { perm, tag, protector: None }; let stack = Stack { borrows: vec![item], }; Stacks { stacks: RefCell::new(RangeMap::new(size, stack)), global: extra, } } /// Call `f` on every stack in the range. fn for_each( &self, ptr: Pointer, size: Size, f: impl Fn(&mut Stack, &GlobalState) -> InterpResult<'tcx>, ) -> InterpResult<'tcx> { let global = self.global.borrow(); let mut stacks = self.stacks.borrow_mut(); for stack in stacks.iter_mut(ptr.offset, size) { f(stack, &*global)?; } Ok(()) } } /// Glue code to connect with Miri Machine Hooks impl Stacks { pub fn new_allocation( id: AllocId, size: Size, extra: MemoryExtra, kind: MemoryKind, ) -> (Self, Tag) { let (tag, perm) = match kind { MemoryKind::Stack => // New unique borrow. This tag is not accessible by the program, // so it will only ever be used when using the local directly (i.e., // not through a pointer). That is, whenever we directly write to a local, this will pop // everything else off the stack, invalidating all previous pointers, // and in particular, *all* raw pointers. (Tag::Tagged(extra.borrow_mut().new_ptr()), Permission::Unique), MemoryKind::Machine(MiriMemoryKind::Static) => (extra.borrow_mut().static_base_ptr(id), Permission::SharedReadWrite), _ => (Tag::Untagged, Permission::SharedReadWrite), }; let stack = Stacks::new(size, perm, tag, extra); (stack, tag) } #[inline(always)] pub fn memory_read<'tcx>( &self, ptr: Pointer, size: Size, ) -> InterpResult<'tcx> { trace!("read access with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes()); self.for_each(ptr, size, |stack, global| { stack.access(AccessKind::Read, ptr.tag, global)?; Ok(()) }) } #[inline(always)] pub fn memory_written<'tcx>( &mut self, ptr: Pointer, size: Size, ) -> InterpResult<'tcx> { trace!("write access with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes()); self.for_each(ptr, size, |stack, global| { stack.access(AccessKind::Write, ptr.tag, global)?; Ok(()) }) } #[inline(always)] pub fn memory_deallocated<'tcx>( &mut self, ptr: Pointer, size: Size, ) -> InterpResult<'tcx> { trace!("deallocation with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes()); self.for_each(ptr, size, |stack, global| { stack.dealloc(ptr.tag, global) }) } } /// Retagging/reborrowing. There is some policy in here, such as which permissions /// to grant for which references, and when to add protectors. impl<'mir, 'tcx> EvalContextPrivExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} trait EvalContextPrivExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { fn reborrow( &mut self, place: MPlaceTy<'tcx, Tag>, size: Size, kind: RefKind, new_tag: Tag, protect: bool, ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let protector = if protect { Some(this.frame().extra) } else { None }; let ptr = this.memory().check_ptr_access(place.ptr, size, place.align) .expect("validity checks should have excluded dangling/unaligned pointer") .expect("we shouldn't get here for ZST"); trace!("reborrow: {} reference {:?} derived from {:?} (pointee {}): {:?}, size {}", kind, new_tag, ptr.tag, place.layout.ty, ptr.erase_tag(), size.bytes()); // Get the allocation. It might not be mutable, so we cannot use `get_mut`. let alloc = this.memory().get(ptr.alloc_id)?; // Update the stacks. // Make sure that raw pointers and mutable shared references are reborrowed "weak": // There could be existing unique pointers reborrowed from them that should remain valid! let perm = match kind { RefKind::Unique { two_phase: false } => Permission::Unique, RefKind::Unique { two_phase: true } => Permission::SharedReadWrite, RefKind::Raw { mutable: true } => Permission::SharedReadWrite, RefKind::Shared | RefKind::Raw { mutable: false } => { // Shared references and *const are a whole different kind of game, the // permission is not uniform across the entire range! // We need a frozen-sensitive reborrow. return this.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| { // We are only ever `SharedReadOnly` inside the frozen bits. let perm = if frozen { Permission::SharedReadOnly } else { Permission::SharedReadWrite }; let item = Item { perm, tag: new_tag, protector }; alloc.extra.stacked_borrows.for_each(cur_ptr, size, |stack, global| { stack.grant(cur_ptr.tag, item, global) }) }); } }; let item = Item { perm, tag: new_tag, protector }; alloc.extra.stacked_borrows.for_each(ptr, size, |stack, global| { stack.grant(ptr.tag, item, global) }) } /// Retags an indidual pointer, returning the retagged version. /// `mutbl` can be `None` to make this a raw pointer. fn retag_reference( &mut self, val: ImmTy<'tcx, Tag>, kind: RefKind, protect: bool, ) -> InterpResult<'tcx, Immediate> { let this = self.eval_context_mut(); // We want a place for where the ptr *points to*, so we get one. let place = this.ref_to_mplace(val)?; let size = this.size_and_align_of_mplace(place)? .map(|(size, _)| size) .unwrap_or_else(|| place.layout.size); if size == Size::ZERO { // Nothing to do for ZSTs. return Ok(*val); } // Compute new borrow. let new_tag = match kind { RefKind::Raw { .. } => Tag::Untagged, _ => Tag::Tagged(this.memory().extra.stacked_borrows.borrow_mut().new_ptr()), }; // Reborrow. this.reborrow(place, size, kind, new_tag, protect)?; let new_place = place.replace_tag(new_tag); // Return new pointer. Ok(new_place.to_ref()) } } impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { fn retag( &mut self, kind: RetagKind, place: PlaceTy<'tcx, Tag> ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); // Determine mutability and whether to add a protector. // Cannot use `builtin_deref` because that reports *immutable* for `Box`, // making it useless. fn qualify(ty: ty::Ty<'_>, kind: RetagKind) -> Option<(RefKind, bool)> { match ty.sty { // References are simple. ty::Ref(_, _, MutMutable) => Some((RefKind::Unique { two_phase: kind == RetagKind::TwoPhase}, kind == RetagKind::FnEntry)), ty::Ref(_, _, MutImmutable) => Some((RefKind::Shared, kind == RetagKind::FnEntry)), // Raw pointers need to be enabled. ty::RawPtr(tym) if kind == RetagKind::Raw => Some((RefKind::Raw { mutable: tym.mutbl == MutMutable }, false)), // Boxes do not get a protector: protectors reflect that references outlive the call // they were passed in to; that's just not the case for boxes. ty::Adt(..) if ty.is_box() => Some((RefKind::Unique { two_phase: false }, false)), _ => None, } } // We need a visitor to visit all references. However, that requires // a `MemPlace`, so we have a fast path for reference types that // avoids allocating. if let Some((mutbl, protector)) = qualify(place.layout.ty, kind) { // Fast path. let val = this.read_immediate(this.place_to_op(place)?)?; let val = this.retag_reference(val, mutbl, protector)?; this.write_immediate(val, place)?; return Ok(()); } let place = this.force_allocation(place)?; let mut visitor = RetagVisitor { ecx: this, kind }; visitor.visit_value(place)?; // The actual visitor. struct RetagVisitor<'ecx, 'mir, 'tcx> { ecx: &'ecx mut MiriEvalContext<'mir, 'tcx>, kind: RetagKind, } impl<'ecx, 'mir, 'tcx> MutValueVisitor<'mir, 'tcx, Evaluator<'tcx>> for RetagVisitor<'ecx, 'mir, 'tcx> { type V = MPlaceTy<'tcx, Tag>; #[inline(always)] fn ecx(&mut self) -> &mut MiriEvalContext<'mir, 'tcx> { &mut self.ecx } // Primitives of reference type, that is the one thing we are interested in. fn visit_primitive(&mut self, place: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> { // Cannot use `builtin_deref` because that reports *immutable* for `Box`, // making it useless. if let Some((mutbl, protector)) = qualify(place.layout.ty, self.kind) { let val = self.ecx.read_immediate(place.into())?; let val = self.ecx.retag_reference( val, mutbl, protector )?; self.ecx.write_immediate(val, place.into())?; } Ok(()) } } Ok(()) } }