//! This module add real world mbe example for benchmark tests use rustc_hash::FxHashMap; use syntax::{ ast::{self, HasName}, AstNode, SmolStr, }; use test_utils::{bench, bench_fixture, skip_slow_tests}; use crate::{ parser::{Op, RepeatKind, Separator}, syntax_node_to_token_tree, DeclarativeMacro, }; #[test] fn benchmark_parse_macro_rules() { if skip_slow_tests() { return; } let rules = macro_rules_fixtures_tt(); let hash: usize = { let _pt = bench("mbe parse macro rules"); rules.values().map(|it| DeclarativeMacro::parse_macro_rules(it).unwrap().rules.len()).sum() }; assert_eq!(hash, 1144); } #[test] fn benchmark_expand_macro_rules() { if skip_slow_tests() { return; } let rules = macro_rules_fixtures(); let invocations = invocation_fixtures(&rules); let hash: usize = { let _pt = bench("mbe expand macro rules"); invocations .into_iter() .map(|(id, tt)| { let res = rules[&id].expand(&tt); assert!(res.err.is_none()); res.value.token_trees.len() }) .sum() }; assert_eq!(hash, 69413); } fn macro_rules_fixtures() -> FxHashMap { macro_rules_fixtures_tt() .into_iter() .map(|(id, tt)| (id, DeclarativeMacro::parse_macro_rules(&tt).unwrap())) .collect() } fn macro_rules_fixtures_tt() -> FxHashMap { let fixture = bench_fixture::numerous_macro_rules(); let source_file = ast::SourceFile::parse(&fixture).ok().unwrap(); source_file .syntax() .descendants() .filter_map(ast::MacroRules::cast) .map(|rule| { let id = rule.name().unwrap().to_string(); let (def_tt, _) = syntax_node_to_token_tree(rule.token_tree().unwrap().syntax()); (id, def_tt) }) .collect() } /// Generate random invocation fixtures from rules fn invocation_fixtures(rules: &FxHashMap) -> Vec<(String, tt::Subtree)> { let mut seed = 123456789; let mut res = Vec::new(); for (name, it) in rules { for rule in &it.rules { // Generate twice for _ in 0..2 { // The input are generated by filling the `Op` randomly. // However, there are some cases generated are ambiguous for expanding, for example: // ```rust // macro_rules! m { // ($($t:ident),* as $ty:ident) => {} // } // m!(as u32); // error: local ambiguity: multiple parsing options: built-in NTs ident ('t') or 1 other option. // ``` // // So we just skip any error cases and try again let mut try_cnt = 0; loop { let mut subtree = tt::Subtree::default(); for op in rule.lhs.iter() { collect_from_op(op, &mut subtree, &mut seed); } if it.expand(&subtree).err.is_none() { res.push((name.clone(), subtree)); break; } try_cnt += 1; if try_cnt > 100 { panic!("invocaton fixture {} cannot be generated.\n", name); } } } } } return res; fn collect_from_op(op: &Op, parent: &mut tt::Subtree, seed: &mut usize) { return match op { Op::Var { kind, .. } => match kind.as_ref().map(|it| it.as_str()) { Some("ident") => parent.token_trees.push(make_ident("foo")), Some("ty") => parent.token_trees.push(make_ident("Foo")), Some("tt") => parent.token_trees.push(make_ident("foo")), Some("vis") => parent.token_trees.push(make_ident("pub")), Some("pat") => parent.token_trees.push(make_ident("foo")), Some("path") => parent.token_trees.push(make_ident("foo")), Some("literal") => parent.token_trees.push(make_literal("1")), Some("expr") => parent.token_trees.push(make_ident("foo")), Some("lifetime") => { parent.token_trees.push(make_punct('\'')); parent.token_trees.push(make_ident("a")); } Some("block") => { parent.token_trees.push(make_subtree(tt::DelimiterKind::Brace, None)) } Some("item") => { parent.token_trees.push(make_ident("fn")); parent.token_trees.push(make_ident("foo")); parent.token_trees.push(make_subtree(tt::DelimiterKind::Parenthesis, None)); parent.token_trees.push(make_subtree(tt::DelimiterKind::Brace, None)); } Some("meta") => { parent.token_trees.push(make_ident("foo")); parent.token_trees.push(make_subtree(tt::DelimiterKind::Parenthesis, None)); } None => (), Some(kind) => panic!("Unhandled kind {}", kind), }, Op::Leaf(leaf) => parent.token_trees.push(leaf.clone().into()), Op::Repeat { tokens, kind, separator } => { let max = 10; let cnt = match kind { RepeatKind::ZeroOrMore => rand(seed) % max, RepeatKind::OneOrMore => 1 + rand(seed) % max, RepeatKind::ZeroOrOne => rand(seed) % 2, }; for i in 0..cnt { for it in tokens.iter() { collect_from_op(it, parent, seed); } if i + 1 != cnt { if let Some(sep) = separator { match sep { Separator::Literal(it) => { parent.token_trees.push(tt::Leaf::Literal(it.clone()).into()) } Separator::Ident(it) => { parent.token_trees.push(tt::Leaf::Ident(it.clone()).into()) } Separator::Puncts(puncts) => { for it in puncts { parent.token_trees.push(tt::Leaf::Punct(*it).into()) } } }; } } } } Op::Subtree { tokens, delimiter } => { let mut subtree = tt::Subtree { delimiter: *delimiter, token_trees: Vec::new() }; tokens.iter().for_each(|it| { collect_from_op(it, &mut subtree, seed); }); parent.token_trees.push(subtree.into()); } Op::Ignore { .. } | Op::Index { .. } => {} }; // Simple linear congruential generator for determistic result fn rand(seed: &mut usize) -> usize { let a = 1664525; let c = 1013904223; *seed = usize::wrapping_add(usize::wrapping_mul(*seed, a), c); *seed } fn make_ident(ident: &str) -> tt::TokenTree { tt::Leaf::Ident(tt::Ident { id: tt::TokenId::unspecified(), text: SmolStr::new(ident) }) .into() } fn make_punct(char: char) -> tt::TokenTree { tt::Leaf::Punct(tt::Punct { id: tt::TokenId::unspecified(), char, spacing: tt::Spacing::Alone, }) .into() } fn make_literal(lit: &str) -> tt::TokenTree { tt::Leaf::Literal(tt::Literal { id: tt::TokenId::unspecified(), text: SmolStr::new(lit), }) .into() } fn make_subtree( kind: tt::DelimiterKind, token_trees: Option>, ) -> tt::TokenTree { tt::Subtree { delimiter: Some(tt::Delimiter { id: tt::TokenId::unspecified(), kind }), token_trees: token_trees.unwrap_or_default(), } .into() } } }