// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use metadata::csearch; use middle::astencode; use middle::ty; use middle; use syntax::{ast, ast_map, ast_util, visit}; use syntax::ast::*; use core::hashmap::{HashMap, HashSet}; // // This pass classifies expressions by their constant-ness. // // Constant-ness comes in 3 flavours: // // - Integer-constants: can be evaluated by the frontend all the way down // to their actual value. They are used in a few places (enum // discriminants, switch arms) and are a subset of // general-constants. They cover all the integer and integer-ish // literals (nil, bool, int, uint, char, iNN, uNN) and all integer // operators and copies applied to them. // // - General-constants: can be evaluated by LLVM but not necessarily by // the frontend; usually due to reliance on target-specific stuff such // as "where in memory the value goes" or "what floating point mode the // target uses". This _includes_ integer-constants, plus the following // constructors: // // fixed-size vectors and strings: [] and ""/_ // vector and string slices: &[] and &"" // tuples: (,) // records: {...} // enums: foo(...) // floating point literals and operators // & and * pointers // copies of general constants // // (in theory, probably not at first: if/match on integer-const // conditions / descriminants) // // - Non-constants: everything else. // pub enum constness { integral_const, general_const, non_const } pub fn join(a: constness, b: constness) -> constness { match (a, b) { (integral_const, integral_const) => integral_const, (integral_const, general_const) | (general_const, integral_const) | (general_const, general_const) => general_const, _ => non_const } } pub fn join_all(cs: &[constness]) -> constness { vec::foldl(integral_const, cs, |a, b| join(a, *b)) } pub fn classify(e: @expr, tcx: ty::ctxt) -> constness { let did = ast_util::local_def(e.id); match tcx.ccache.find(&did) { Some(&x) => x, None => { let cn = match e.node { ast::expr_lit(lit) => { match lit.node { ast::lit_str(*) | ast::lit_float(*) => general_const, _ => integral_const } } ast::expr_copy(inner) | ast::expr_unary(_, inner) | ast::expr_paren(inner) => { classify(inner, tcx) } ast::expr_binary(_, a, b) => { join(classify(a, tcx), classify(b, tcx)) } ast::expr_tup(ref es) | ast::expr_vec(ref es, ast::m_imm) => { join_all(vec::map(*es, |e| classify(*e, tcx))) } ast::expr_vstore(e, vstore) => { match vstore { ast::expr_vstore_slice => classify(e, tcx), ast::expr_vstore_uniq | ast::expr_vstore_box | ast::expr_vstore_mut_box | ast::expr_vstore_mut_slice => non_const } } ast::expr_struct(_, ref fs, None) => { let cs = do vec::map((*fs)) |f| { if f.node.mutbl == ast::m_imm { classify(f.node.expr, tcx) } else { non_const } }; join_all(cs) } ast::expr_cast(base, _) => { let ty = ty::expr_ty(tcx, e); let base = classify(base, tcx); if ty::type_is_integral(ty) { join(integral_const, base) } else if ty::type_is_fp(ty) { join(general_const, base) } else { non_const } } ast::expr_field(base, _, _) => { classify(base, tcx) } ast::expr_index(base, idx) => { join(classify(base, tcx), classify(idx, tcx)) } ast::expr_addr_of(ast::m_imm, base) => { classify(base, tcx) } // FIXME: (#3728) we can probably do something CCI-ish // surrounding nonlocal constants. But we don't yet. ast::expr_path(_) => { lookup_constness(tcx, e) } _ => non_const }; tcx.ccache.insert(did, cn); cn } } } pub fn lookup_const(tcx: ty::ctxt, e: @expr) -> Option<@expr> { match tcx.def_map.find(&e.id) { Some(&ast::def_const(def_id)) => lookup_const_by_id(tcx, def_id), _ => None } } pub fn lookup_const_by_id(tcx: ty::ctxt, def_id: ast::def_id) -> Option<@expr> { if ast_util::is_local(def_id) { match tcx.items.find(&def_id.node) { None => None, Some(&ast_map::node_item(it, _)) => match it.node { item_const(_, const_expr) => Some(const_expr), _ => None }, Some(_) => None } } else { let maps = astencode::Maps { root_map: @mut HashMap::new(), method_map: @mut HashMap::new(), vtable_map: @mut HashMap::new(), write_guard_map: @mut HashSet::new(), moves_map: @mut HashSet::new(), capture_map: @mut HashMap::new() }; match csearch::maybe_get_item_ast(tcx, def_id, |a, b, c, d| astencode::decode_inlined_item(a, b, maps, /*bar*/ copy c, d)) { csearch::found(ast::ii_item(item)) => match item.node { item_const(_, const_expr) => Some(const_expr), _ => None }, _ => None } } } pub fn lookup_constness(tcx: ty::ctxt, e: @expr) -> constness { match lookup_const(tcx, e) { Some(rhs) => { let ty = ty::expr_ty(tcx, rhs); if ty::type_is_integral(ty) { integral_const } else { general_const } } None => non_const } } pub fn process_crate(crate: @ast::crate, tcx: ty::ctxt) { let v = visit::mk_simple_visitor(@visit::SimpleVisitor { visit_expr_post: |e| { classify(e, tcx); }, .. *visit::default_simple_visitor() }); visit::visit_crate(crate, (), v); tcx.sess.abort_if_errors(); } // FIXME (#33): this doesn't handle big integer/float literals correctly // (nor does the rest of our literal handling). #[deriving(Eq)] pub enum const_val { const_float(f64), const_int(i64), const_uint(u64), const_str(~str), const_bool(bool) } pub fn eval_const_expr(tcx: middle::ty::ctxt, e: @expr) -> const_val { match eval_const_expr_partial(tcx, e) { Ok(ref r) => (/*bad*/copy *r), Err(ref s) => fail!(/*bad*/copy *s) } } pub fn eval_const_expr_partial(tcx: middle::ty::ctxt, e: @expr) -> Result { use middle::ty; fn fromb(b: bool) -> Result { Ok(const_int(b as i64)) } match e.node { expr_unary(neg, inner) => { match eval_const_expr_partial(tcx, inner) { Ok(const_float(f)) => Ok(const_float(-f)), Ok(const_int(i)) => Ok(const_int(-i)), Ok(const_uint(i)) => Ok(const_uint(-i)), Ok(const_str(_)) => Err(~"Negate on string"), Ok(const_bool(_)) => Err(~"Negate on boolean"), ref err => (/*bad*/copy *err) } } expr_unary(not, inner) => { match eval_const_expr_partial(tcx, inner) { Ok(const_int(i)) => Ok(const_int(!i)), Ok(const_uint(i)) => Ok(const_uint(!i)), Ok(const_bool(b)) => Ok(const_bool(!b)), _ => Err(~"Not on float or string") } } expr_binary(op, a, b) => { match (eval_const_expr_partial(tcx, a), eval_const_expr_partial(tcx, b)) { (Ok(const_float(a)), Ok(const_float(b))) => { match op { add => Ok(const_float(a + b)), subtract => Ok(const_float(a - b)), mul => Ok(const_float(a * b)), div => Ok(const_float(a / b)), rem => Ok(const_float(a % b)), eq => fromb(a == b), lt => fromb(a < b), le => fromb(a <= b), ne => fromb(a != b), ge => fromb(a >= b), gt => fromb(a > b), _ => Err(~"Can't do this op on floats") } } (Ok(const_int(a)), Ok(const_int(b))) => { match op { add => Ok(const_int(a + b)), subtract => Ok(const_int(a - b)), mul => Ok(const_int(a * b)), div if b == 0 => Err(~"attempted to divide by zero"), div => Ok(const_int(a / b)), rem if b == 0 => Err(~"attempted remainder with a divisor of zero"), rem => Ok(const_int(a % b)), and | bitand => Ok(const_int(a & b)), or | bitor => Ok(const_int(a | b)), bitxor => Ok(const_int(a ^ b)), shl => Ok(const_int(a << b)), shr => Ok(const_int(a >> b)), eq => fromb(a == b), lt => fromb(a < b), le => fromb(a <= b), ne => fromb(a != b), ge => fromb(a >= b), gt => fromb(a > b) } } (Ok(const_uint(a)), Ok(const_uint(b))) => { match op { add => Ok(const_uint(a + b)), subtract => Ok(const_uint(a - b)), mul => Ok(const_uint(a * b)), div if b == 0 => Err(~"attempted to divide by zero"), div => Ok(const_uint(a / b)), rem if b == 0 => Err(~"attempted remainder with a divisor of zero"), rem => Ok(const_uint(a % b)), and | bitand => Ok(const_uint(a & b)), or | bitor => Ok(const_uint(a | b)), bitxor => Ok(const_uint(a ^ b)), shl => Ok(const_uint(a << b)), shr => Ok(const_uint(a >> b)), eq => fromb(a == b), lt => fromb(a < b), le => fromb(a <= b), ne => fromb(a != b), ge => fromb(a >= b), gt => fromb(a > b), } } // shifts can have any integral type as their rhs (Ok(const_int(a)), Ok(const_uint(b))) => { match op { shl => Ok(const_int(a << b)), shr => Ok(const_int(a >> b)), _ => Err(~"Can't do this op on an int and uint") } } (Ok(const_uint(a)), Ok(const_int(b))) => { match op { shl => Ok(const_uint(a << b)), shr => Ok(const_uint(a >> b)), _ => Err(~"Can't do this op on a uint and int") } } (Ok(const_bool(a)), Ok(const_bool(b))) => { Ok(const_bool(match op { and => a && b, or => a || b, bitxor => a ^ b, bitand => a & b, bitor => a | b, eq => a == b, ne => a != b, _ => return Err(~"Can't do this op on bools") })) } _ => Err(~"Bad operands for binary") } } expr_cast(base, _) => { let ety = ty::expr_ty(tcx, e); let base = eval_const_expr_partial(tcx, base); match /*bad*/copy base { Err(_) => base, Ok(val) => { match ty::get(ety).sty { ty::ty_float(_) => match val { const_uint(u) => Ok(const_float(u as f64)), const_int(i) => Ok(const_float(i as f64)), const_float(_) => base, _ => Err(~"Can't cast float to str"), }, ty::ty_uint(_) => match val { const_uint(_) => base, const_int(i) => Ok(const_uint(i as u64)), const_float(f) => Ok(const_uint(f as u64)), _ => Err(~"Can't cast str to uint"), }, ty::ty_int(_) | ty::ty_bool => match val { const_uint(u) => Ok(const_int(u as i64)), const_int(_) => base, const_float(f) => Ok(const_int(f as i64)), _ => Err(~"Can't cast str to int"), }, _ => Err(~"Can't cast this type") } } } } expr_path(_) => { match lookup_const(tcx, e) { Some(actual_e) => eval_const_expr_partial(tcx, actual_e), None => Err(~"Non-constant path in constant expr") } } expr_lit(lit) => Ok(lit_to_const(lit)), // If we have a vstore, just keep going; it has to be a string expr_vstore(e, _) => eval_const_expr_partial(tcx, e), expr_paren(e) => eval_const_expr_partial(tcx, e), _ => Err(~"Unsupported constant expr") } } pub fn lit_to_const(lit: @lit) -> const_val { match lit.node { lit_str(s) => const_str(/*bad*/copy *s), lit_int(n, _) => const_int(n), lit_uint(n, _) => const_uint(n), lit_int_unsuffixed(n) => const_int(n), lit_float(n, _) => const_float(float::from_str(*n).get() as f64), lit_float_unsuffixed(n) => const_float(float::from_str(*n).get() as f64), lit_nil => const_int(0i64), lit_bool(b) => const_bool(b) } } pub fn compare_const_vals(a: &const_val, b: &const_val) -> int { match (a, b) { (&const_int(a), &const_int(b)) => { if a == b { 0 } else if a < b { -1 } else { 1 } } (&const_uint(a), &const_uint(b)) => { if a == b { 0 } else if a < b { -1 } else { 1 } } (&const_float(a), &const_float(b)) => { if a == b { 0 } else if a < b { -1 } else { 1 } } (&const_str(ref a), &const_str(ref b)) => { if (*a) == (*b) { 0 } else if (*a) < (*b) { -1 } else { 1 } } (&const_bool(a), &const_bool(b)) => { if a == b { 0 } else if a < b { -1 } else { 1 } } _ => fail!(~"compare_const_vals: ill-typed comparison") } } pub fn compare_lit_exprs(tcx: middle::ty::ctxt, a: @expr, b: @expr) -> int { compare_const_vals(&eval_const_expr(tcx, a), &eval_const_expr(tcx, b)) } pub fn lit_expr_eq(tcx: middle::ty::ctxt, a: @expr, b: @expr) -> bool { compare_lit_exprs(tcx, a, b) == 0 } pub fn lit_eq(a: @lit, b: @lit) -> bool { compare_const_vals(&lit_to_const(a), &lit_to_const(b)) == 0 }