//! Handle syntactic aspects of merging UseTrees. use std::cmp::Ordering; use itertools::{EitherOrBoth, Itertools}; use syntax::{ ast::{self, AstNode, HasAttrs, HasVisibility, PathSegmentKind}, ted, }; use crate::syntax_helpers::node_ext::vis_eq; /// What type of merges are allowed. #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum MergeBehavior { /// Merge imports from the same crate into a single use statement. Crate, /// Merge imports from the same module into a single use statement. Module, } impl MergeBehavior { fn is_tree_allowed(&self, tree: &ast::UseTree) -> bool { match self { MergeBehavior::Crate => true, // only simple single segment paths are allowed MergeBehavior::Module => { tree.use_tree_list().is_none() && tree.path().map(path_len) <= Some(1) } } } } /// Merge `rhs` into `lhs` keeping both intact. /// Returned AST is mutable. pub fn try_merge_imports( lhs: &ast::Use, rhs: &ast::Use, merge_behavior: MergeBehavior, ) -> Option { // don't merge imports with different visibilities if !eq_visibility(lhs.visibility(), rhs.visibility()) { return None; } if !eq_attrs(lhs.attrs(), rhs.attrs()) { return None; } let lhs = lhs.clone_subtree().clone_for_update(); let rhs = rhs.clone_subtree().clone_for_update(); let lhs_tree = lhs.use_tree()?; let rhs_tree = rhs.use_tree()?; try_merge_trees_mut(&lhs_tree, &rhs_tree, merge_behavior)?; Some(lhs) } /// Merge `rhs` into `lhs` keeping both intact. /// Returned AST is mutable. pub fn try_merge_trees( lhs: &ast::UseTree, rhs: &ast::UseTree, merge: MergeBehavior, ) -> Option { let lhs = lhs.clone_subtree().clone_for_update(); let rhs = rhs.clone_subtree().clone_for_update(); try_merge_trees_mut(&lhs, &rhs, merge)?; Some(lhs) } fn try_merge_trees_mut(lhs: &ast::UseTree, rhs: &ast::UseTree, merge: MergeBehavior) -> Option<()> { let lhs_path = lhs.path()?; let rhs_path = rhs.path()?; let (lhs_prefix, rhs_prefix) = common_prefix(&lhs_path, &rhs_path)?; if !(lhs.is_simple_path() && rhs.is_simple_path() && lhs_path == lhs_prefix && rhs_path == rhs_prefix) { lhs.split_prefix(&lhs_prefix); rhs.split_prefix(&rhs_prefix); } else { ted::replace(lhs.syntax(), rhs.syntax()); // we can safely return here, in this case `recursive_merge` doesn't do anything return Some(()); } recursive_merge(lhs, rhs, merge) } /// Recursively merges rhs to lhs #[must_use] fn recursive_merge(lhs: &ast::UseTree, rhs: &ast::UseTree, merge: MergeBehavior) -> Option<()> { let mut use_trees: Vec = lhs .use_tree_list() .into_iter() .flat_map(|list| list.use_trees()) // We use Option here to early return from this function(this is not the // same as a `filter` op). .map(|tree| merge.is_tree_allowed(&tree).then_some(tree)) .collect::>()?; use_trees.sort_unstable_by(|a, b| path_cmp_for_sort(a.path(), b.path())); for rhs_t in rhs.use_tree_list().into_iter().flat_map(|list| list.use_trees()) { if !merge.is_tree_allowed(&rhs_t) { return None; } let rhs_path = rhs_t.path(); match use_trees .binary_search_by(|lhs_t| path_cmp_bin_search(lhs_t.path(), rhs_path.as_ref())) { Ok(idx) => { let lhs_t = &mut use_trees[idx]; let lhs_path = lhs_t.path()?; let rhs_path = rhs_path?; let (lhs_prefix, rhs_prefix) = common_prefix(&lhs_path, &rhs_path)?; if lhs_prefix == lhs_path && rhs_prefix == rhs_path { let tree_is_self = |tree: &ast::UseTree| { tree.path().as_ref().map(path_is_self).unwrap_or(false) }; // Check if only one of the two trees has a tree list, and // whether that then contains `self` or not. If this is the // case we can skip this iteration since the path without // the list is already included in the other one via `self`. let tree_contains_self = |tree: &ast::UseTree| { tree.use_tree_list() .map(|tree_list| tree_list.use_trees().any(|it| tree_is_self(&it))) // Glob imports aren't part of the use-tree lists, // so they need to be handled explicitly .or_else(|| tree.star_token().map(|_| false)) }; if lhs_t.rename().and_then(|x| x.underscore_token()).is_some() { ted::replace(lhs_t.syntax(), rhs_t.syntax()); *lhs_t = rhs_t; continue; } match (tree_contains_self(lhs_t), tree_contains_self(&rhs_t)) { (Some(true), None) => continue, (None, Some(true)) => { ted::replace(lhs_t.syntax(), rhs_t.syntax()); *lhs_t = rhs_t; continue; } _ => (), } if lhs_t.is_simple_path() && rhs_t.is_simple_path() { continue; } } lhs_t.split_prefix(&lhs_prefix); rhs_t.split_prefix(&rhs_prefix); recursive_merge(lhs_t, &rhs_t, merge)?; } Err(_) if merge == MergeBehavior::Module && !use_trees.is_empty() && rhs_t.use_tree_list().is_some() => { return None } Err(idx) => { use_trees.insert(idx, rhs_t.clone()); lhs.get_or_create_use_tree_list().add_use_tree(rhs_t); } } } Some(()) } /// Traverses both paths until they differ, returning the common prefix of both. pub fn common_prefix(lhs: &ast::Path, rhs: &ast::Path) -> Option<(ast::Path, ast::Path)> { let mut res = None; let mut lhs_curr = lhs.first_qualifier_or_self(); let mut rhs_curr = rhs.first_qualifier_or_self(); loop { match (lhs_curr.segment(), rhs_curr.segment()) { (Some(lhs), Some(rhs)) if lhs.syntax().text() == rhs.syntax().text() => (), _ => break res, } res = Some((lhs_curr.clone(), rhs_curr.clone())); match lhs_curr.parent_path().zip(rhs_curr.parent_path()) { Some((lhs, rhs)) => { lhs_curr = lhs; rhs_curr = rhs; } _ => break res, } } } /// Orders paths in the following way: /// the sole self token comes first, after that come uppercase identifiers, then lowercase identifiers // FIXME: rustfmt sorts lowercase idents before uppercase, in general we want to have the same ordering rustfmt has // which is `self` and `super` first, then identifier imports with lowercase ones first, then glob imports and at last list imports. // Example foo::{self, foo, baz, Baz, Qux, *, {Bar}} fn path_cmp_for_sort(a: Option, b: Option) -> Ordering { match (a, b) { (None, None) => Ordering::Equal, (None, Some(_)) => Ordering::Less, (Some(_), None) => Ordering::Greater, (Some(ref a), Some(ref b)) => match (path_is_self(a), path_is_self(b)) { (true, true) => Ordering::Equal, (true, false) => Ordering::Less, (false, true) => Ordering::Greater, (false, false) => path_cmp_short(a, b), }, } } /// Path comparison func for binary searching for merging. fn path_cmp_bin_search(lhs: Option, rhs: Option<&ast::Path>) -> Ordering { match (lhs.as_ref().and_then(ast::Path::first_segment), rhs.and_then(ast::Path::first_segment)) { (None, None) => Ordering::Equal, (None, Some(_)) => Ordering::Less, (Some(_), None) => Ordering::Greater, (Some(ref a), Some(ref b)) => path_segment_cmp(a, b), } } /// Short circuiting comparison, if both paths are equal until one of them ends they are considered /// equal fn path_cmp_short(a: &ast::Path, b: &ast::Path) -> Ordering { let a = a.segments(); let b = b.segments(); // cmp_by would be useful for us here but that is currently unstable // cmp doesn't work due the lifetimes on text's return type a.zip(b) .find_map(|(a, b)| match path_segment_cmp(&a, &b) { Ordering::Equal => None, ord => Some(ord), }) .unwrap_or(Ordering::Equal) } /// Compares two paths, if one ends earlier than the other the has_tl parameters decide which is /// greater as a path that has a tree list should be greater, while one that just ends without /// a tree list should be considered less. pub(super) fn use_tree_path_cmp( a: &ast::Path, a_has_tl: bool, b: &ast::Path, b_has_tl: bool, ) -> Ordering { let a_segments = a.segments(); let b_segments = b.segments(); // cmp_by would be useful for us here but that is currently unstable // cmp doesn't work due the lifetimes on text's return type a_segments .zip_longest(b_segments) .find_map(|zipped| match zipped { EitherOrBoth::Both(ref a, ref b) => match path_segment_cmp(a, b) { Ordering::Equal => None, ord => Some(ord), }, EitherOrBoth::Left(_) if !b_has_tl => Some(Ordering::Greater), EitherOrBoth::Left(_) => Some(Ordering::Less), EitherOrBoth::Right(_) if !a_has_tl => Some(Ordering::Less), EitherOrBoth::Right(_) => Some(Ordering::Greater), }) .unwrap_or(Ordering::Equal) } fn path_segment_cmp(a: &ast::PathSegment, b: &ast::PathSegment) -> Ordering { let a = a.kind().and_then(|kind| match kind { PathSegmentKind::Name(name_ref) => Some(name_ref), _ => None, }); let b = b.kind().and_then(|kind| match kind { PathSegmentKind::Name(name_ref) => Some(name_ref), _ => None, }); a.as_ref().map(ast::NameRef::text).cmp(&b.as_ref().map(ast::NameRef::text)) } pub fn eq_visibility(vis0: Option, vis1: Option) -> bool { match (vis0, vis1) { (None, None) => true, (Some(vis0), Some(vis1)) => vis_eq(&vis0, &vis1), _ => false, } } pub fn eq_attrs( attrs0: impl Iterator, attrs1: impl Iterator, ) -> bool { // FIXME order of attributes should not matter let attrs0 = attrs0 .flat_map(|attr| attr.syntax().descendants_with_tokens()) .flat_map(|it| it.into_token()); let attrs1 = attrs1 .flat_map(|attr| attr.syntax().descendants_with_tokens()) .flat_map(|it| it.into_token()); stdx::iter_eq_by(attrs0, attrs1, |tok, tok2| tok.text() == tok2.text()) } fn path_is_self(path: &ast::Path) -> bool { path.segment().and_then(|seg| seg.self_token()).is_some() && path.qualifier().is_none() } fn path_len(path: ast::Path) -> usize { path.segments().count() }