// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // NB: transitionary, de-mode-ing. #[forbid(deprecated_mode)]; #[forbid(deprecated_pattern)]; use T = self::inst::T; use char; use cmp::{Eq, Ord}; use from_str::FromStr; use iter; use num; use option::{None, Option, Some}; use str; use uint; use vec; pub const bits : uint = inst::bits; pub const bytes : uint = (inst::bits / 8); pub const min_value: T = 0 as T; pub const max_value: T = 0 as T - 1 as T; #[inline(always)] pub pure fn min(x: T, y: T) -> T { if x < y { x } else { y } } #[inline(always)] pub pure fn max(x: T, y: T) -> T { if x > y { x } else { y } } #[inline(always)] pub pure fn add(x: T, y: T) -> T { x + y } #[inline(always)] pub pure fn sub(x: T, y: T) -> T { x - y } #[inline(always)] pub pure fn mul(x: T, y: T) -> T { x * y } #[inline(always)] pub pure fn div(x: T, y: T) -> T { x / y } #[inline(always)] pub pure fn rem(x: T, y: T) -> T { x % y } #[inline(always)] pub pure fn lt(x: T, y: T) -> bool { x < y } #[inline(always)] pub pure fn le(x: T, y: T) -> bool { x <= y } #[inline(always)] pub pure fn eq(x: T, y: T) -> bool { x == y } #[inline(always)] pub pure fn ne(x: T, y: T) -> bool { x != y } #[inline(always)] pub pure fn ge(x: T, y: T) -> bool { x >= y } #[inline(always)] pub pure fn gt(x: T, y: T) -> bool { x > y } #[inline(always)] pub pure fn is_positive(x: T) -> bool { x > 0 as T } #[inline(always)] pub pure fn is_negative(x: T) -> bool { x < 0 as T } #[inline(always)] pub pure fn is_nonpositive(x: T) -> bool { x <= 0 as T } #[inline(always)] pub pure fn is_nonnegative(x: T) -> bool { x >= 0 as T } #[inline(always)] /// Iterate over the range [`start`,`start`+`step`..`stop`) pub pure fn range_step(start: T, stop: T, step: T, it: fn(T) -> bool) { let mut i = start; if step == 0 { fail ~"range_step called with step == 0"; } else if step > 0 { // ascending while i < stop { if !it(i) { break } i += step; } } else { // descending while i > stop { if !it(i) { break } i += step; } } } #[inline(always)] /// Iterate over the range [`lo`..`hi`) pub pure fn range(lo: T, hi: T, it: fn(T) -> bool) { range_step(lo, hi, 1 as T, it); } #[inline(always)] /// Iterate over the range [`hi`..`lo`) pub pure fn range_rev(hi: T, lo: T, it: fn(T) -> bool) { range_step(hi, lo, -1 as T, it); } /// Computes the bitwise complement #[inline(always)] pub pure fn compl(i: T) -> T { max_value ^ i } #[cfg(notest)] impl T : Ord { #[inline(always)] pure fn lt(&self, other: &T) -> bool { (*self) < (*other) } #[inline(always)] pure fn le(&self, other: &T) -> bool { (*self) <= (*other) } #[inline(always)] pure fn ge(&self, other: &T) -> bool { (*self) >= (*other) } #[inline(always)] pure fn gt(&self, other: &T) -> bool { (*self) > (*other) } } #[cfg(notest)] impl T : Eq { #[inline(always)] pure fn eq(&self, other: &T) -> bool { return (*self) == (*other); } #[inline(always)] pure fn ne(&self, other: &T) -> bool { return (*self) != (*other); } } impl T: num::Num { #[inline(always)] pure fn add(&self, other: &T) -> T { return *self + *other; } #[inline(always)] pure fn sub(&self, other: &T) -> T { return *self - *other; } #[inline(always)] pure fn mul(&self, other: &T) -> T { return *self * *other; } #[inline(always)] pure fn div(&self, other: &T) -> T { return *self / *other; } #[inline(always)] pure fn modulo(&self, other: &T) -> T { return *self % *other; } #[inline(always)] pure fn neg(&self) -> T { return -*self; } #[inline(always)] pure fn to_int(&self) -> int { return *self as int; } #[inline(always)] static pure fn from_int(n: int) -> T { return n as T; } } impl T: num::Zero { #[inline(always)] static pure fn zero() -> T { 0 } } impl T: num::One { #[inline(always)] static pure fn one() -> T { 1 } } impl T: iter::Times { #[inline(always)] #[doc = "A convenience form for basic iteration. Given a variable `x` \ of any numeric type, the expression `for x.times { /* anything */ }` \ will execute the given function exactly x times. If we assume that \ `x` is an int, this is functionally equivalent to \ `for int::range(0, x) |_i| { /* anything */ }`."] pure fn times(&self, it: fn() -> bool) { let mut i = *self; while i > 0 { if !it() { break } i -= 1; } } } /** * Parse a buffer of bytes * * # Arguments * * * buf - A byte buffer * * radix - The base of the number * * # Failure * * `buf` must not be empty */ pub pure fn parse_bytes(buf: &[const u8], radix: uint) -> Option { if vec::len(buf) == 0u { return None; } let mut i = vec::len(buf) - 1u; let mut power = 1u as T; let mut n = 0u as T; loop { match char::to_digit(buf[i] as char, radix) { Some(d) => n += d as T * power, None => return None } power *= radix as T; if i == 0u { return Some(n); } i -= 1u; }; } /// Parse a string to an int #[inline(always)] pub pure fn from_str(s: &str) -> Option { parse_bytes(str::to_bytes(s), 10u) } impl T : FromStr { #[inline(always)] static pure fn from_str(s: &str) -> Option { from_str(s) } } /// Parse a string as an unsigned integer. pub fn from_str_radix(buf: &str, radix: u64) -> Option { if str::len(buf) == 0u { return None; } let mut i = str::len(buf) - 1u; let mut power = 1u64, n = 0u64; loop { match char::to_digit(buf[i] as char, radix as uint) { Some(d) => n += d as u64 * power, None => return None } power *= radix; if i == 0u { return Some(n); } i -= 1u; }; } /** * Convert to a string in a given base * * # Failure * * Fails if `radix` < 2 or `radix` > 16 */ #[inline(always)] pub pure fn to_str(num: T, radix: uint) -> ~str { do to_str_bytes(false, num, radix) |slice| { do vec::as_imm_buf(slice) |p, len| { unsafe { str::raw::from_buf_len(p, len) } } } } /// Low-level helper routine for string conversion. pub pure fn to_str_bytes(neg: bool, num: T, radix: uint, f: fn(v: &[u8]) -> U) -> U { #[inline(always)] pure fn digit(n: T) -> u8 { if n <= 9u as T { n as u8 + '0' as u8 } else if n <= 15u as T { (n - 10 as T) as u8 + 'a' as u8 } else { fail; } } assert (1u < radix && radix <= 16u); // Enough room to hold any number in any radix. // Worst case: 64-bit number, binary-radix, with // a leading negative sign = 65 bytes. let buf : [mut u8 * 65] = [mut 0u8, ..65]; let len = buf.len(); let mut i = len; let mut n = num; let radix = radix as T; loop { i -= 1u; assert 0u < i && i < len; buf[i] = digit(n % radix); n /= radix; if n == 0 as T { break; } } assert 0u < i && i < len; if neg { i -= 1u; buf[i] = '-' as u8; } f(vec::view(buf, i, len)) } /// Convert to a string #[inline(always)] pub pure fn str(i: T) -> ~str { return to_str(i, 10u); } #[test] pub fn test_to_str() { assert to_str(0 as T, 10u) == ~"0"; assert to_str(1 as T, 10u) == ~"1"; assert to_str(2 as T, 10u) == ~"2"; assert to_str(11 as T, 10u) == ~"11"; assert to_str(11 as T, 16u) == ~"b"; assert to_str(255 as T, 16u) == ~"ff"; assert to_str(0xff as T, 10u) == ~"255"; } #[test] pub fn test_from_str() { assert from_str(~"0") == Some(0u as T); assert from_str(~"3") == Some(3u as T); assert from_str(~"10") == Some(10u as T); assert from_str(~"123456789") == Some(123456789u as T); assert from_str(~"00100") == Some(100u as T); assert from_str(~"").is_none(); assert from_str(~" ").is_none(); assert from_str(~"x").is_none(); } #[test] pub fn test_parse_bytes() { use str::to_bytes; assert parse_bytes(to_bytes(~"123"), 10u) == Some(123u as T); assert parse_bytes(to_bytes(~"1001"), 2u) == Some(9u as T); assert parse_bytes(to_bytes(~"123"), 8u) == Some(83u as T); assert parse_bytes(to_bytes(~"123"), 16u) == Some(291u as T); assert parse_bytes(to_bytes(~"ffff"), 16u) == Some(65535u as T); assert parse_bytes(to_bytes(~"z"), 36u) == Some(35u as T); assert parse_bytes(to_bytes(~"Z"), 10u).is_none(); assert parse_bytes(to_bytes(~"_"), 2u).is_none(); } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn to_str_radix1() { uint::to_str(100u, 1u); } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn to_str_radix17() { uint::to_str(100u, 17u); } #[test] pub fn test_times() { use iter::Times; let ten = 10 as T; let mut accum = 0; for ten.times { accum += 1; } assert (accum == 10); }