// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use lib::llvm::llvm; use lib::llvm::ValueRef; use lib; use metadata::csearch; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::{SaveIn, Ignore}; use middle::trans::expr; use middle::trans::glue; use middle::trans::monomorphize; use middle::trans::type_of::*; use middle::ty; use middle::typeck; use util::common::indenter; use util::ppaux::Repr; use middle::trans::type_::Type; use std::c_str::ToCStr; use std::vec; use syntax::ast_map::{Path, PathMod, PathName, PathPrettyName}; use syntax::parse::token; use syntax::{ast, ast_map, ast_util, visit}; /** The main "translation" pass for methods. Generates code for non-monomorphized methods only. Other methods will be generated once they are invoked with specific type parameters, see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`. */ pub fn trans_impl(ccx: @CrateContext, path: Path, name: ast::Ident, methods: &[@ast::Method], generics: &ast::Generics, id: ast::NodeId) { let _icx = push_ctxt("impl::trans_impl"); let tcx = ccx.tcx; debug!("trans_impl(path={}, name={}, id={:?})", path.repr(tcx), name.repr(tcx), id); // Both here and below with generic methods, be sure to recurse and look for // items that we need to translate. if !generics.ty_params.is_empty() { let mut v = TransItemVisitor{ ccx: ccx }; for method in methods.iter() { visit::walk_method_helper(&mut v, *method, ()); } return; } let sub_path = vec::append_one(path, PathName(name)); for method in methods.iter() { if method.generics.ty_params.len() == 0u { let llfn = get_item_val(ccx, method.id); let path = vec::append_one(sub_path.clone(), PathName(method.ident)); trans_method(ccx, path, *method, None, |_| llfn); } else { let mut v = TransItemVisitor{ ccx: ccx }; visit::walk_method_helper(&mut v, *method, ()); } } } /// Translates a (possibly monomorphized) method body. /// /// Parameters: /// * `path`: the path to the method /// * `method`: the AST node for the method /// * `param_substs`: if this is a generic method, the current values for /// type parameters and so forth, else none /// * `llfn`: a closure returning the LLVM ValueRef for the method /// * `impl_id`: the node ID of the impl this method is inside /// /// XXX(pcwalton) Can we take `path` by reference? pub fn trans_method(ccx: @CrateContext, path: Path, method: &ast::Method, param_substs: Option<@param_substs>, llfn_with_self: |Option| -> ValueRef) -> ValueRef { // figure out how self is being passed let self_ty = match method.explicit_self.node { ast::SelfStatic => None, _ => { // determine the (monomorphized) type that `self` maps to for // this method let self_ty = ty::node_id_to_type(ccx.tcx, method.self_id); let self_ty = match param_substs { None => self_ty, Some(param_substs) => { ty::subst_tps(ccx.tcx, param_substs.tys, param_substs.self_ty, self_ty) } }; debug!("calling trans_fn with self_ty {}", self_ty.repr(ccx.tcx)); Some(self_ty) } }; let llfn = llfn_with_self(self_ty); // generate the actual code trans_fn(ccx, path, method.decl, method.body, llfn, self_ty, param_substs, method.id, []); llfn } pub fn trans_method_callee<'a>( bcx: &'a Block<'a>, callee_id: ast::NodeId, this: &ast::Expr, mentry: typeck::method_map_entry, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { let _icx = push_ctxt("impl::trans_method_callee"); debug!("trans_method_callee(callee_id={:?}, this={}, mentry={})", callee_id, bcx.expr_to_str(this), mentry.repr(bcx.tcx())); match mentry.origin { typeck::method_static(did) => { let self_ty = monomorphize_type(bcx, mentry.self_ty); let Result {bcx, val} = trans_arg_expr(bcx, self_ty, this, arg_cleanup_scope, DontAutorefArg); // HACK should not need the pointer cast, eventually trans_fn_ref // should return a function type with the right type for self. let callee_fn = callee::trans_fn_ref(bcx, did, callee_id); let fn_ty = node_id_type(bcx, callee_id); let llfn_ty = type_of_fn_from_ty(bcx.ccx(), Some(self_ty), fn_ty).ptr_to(); let llfn_val = PointerCast(bcx, callee_fn.llfn, llfn_ty); Callee { bcx: bcx, data: Method(MethodData { llfn: llfn_val, llself: val, }) } } typeck::method_param(typeck::method_param { trait_id: trait_id, method_num: off, param_num: p, bound_num: b }) => { match bcx.fcx.param_substs { Some(substs) => { ty::populate_implementations_for_trait_if_necessary( bcx.tcx(), trait_id); let vtbl = find_vtable(bcx.tcx(), substs, p, b); trans_monomorphized_callee(bcx, callee_id, this, mentry, trait_id, off, vtbl, arg_cleanup_scope) } // how to get rid of this? None => fail!("trans_method_callee: missing param_substs") } } typeck::method_object(ref mt) => { trans_trait_callee(bcx, callee_id, mt.real_index, this, arg_cleanup_scope) } } } pub fn trans_static_method_callee(bcx: &Block, method_id: ast::DefId, trait_id: ast::DefId, callee_id: ast::NodeId) -> FnData { let _icx = push_ctxt("impl::trans_static_method_callee"); let ccx = bcx.ccx(); debug!("trans_static_method_callee(method_id={:?}, trait_id={}, \ callee_id={:?})", method_id, ty::item_path_str(bcx.tcx(), trait_id), callee_id); let _indenter = indenter(); ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trait_id); // When we translate a static fn defined in a trait like: // // trait Trait { // fn foo(...) {...} // } // // this winds up being translated as something like: // // fn foo,M1...Mn>(...) {...} // // So when we see a call to this function foo, we have to figure // out which impl the `Trait` bound on the type `self` was // bound to. let bound_index = ty::lookup_trait_def(bcx.tcx(), trait_id). generics.type_param_defs.len(); let mname = if method_id.crate == ast::LOCAL_CRATE { { match bcx.tcx().items.get(method_id.node) { ast_map::NodeTraitMethod(trait_method, _, _) => { ast_util::trait_method_to_ty_method(trait_method).ident } _ => fail!("callee is not a trait method") } } } else { let path = csearch::get_item_path(bcx.tcx(), method_id); match path[path.len()-1] { PathPrettyName(s, _) | PathName(s) => { s } PathMod(_) => { fail!("path doesn't have a name?") } } }; debug!("trans_static_method_callee: method_id={:?}, callee_id={:?}, \ name={}", method_id, callee_id, ccx.sess.str_of(mname)); let vtbls = { let vtable_map = ccx.maps.vtable_map.borrow(); vtable_map.get().get_copy(&callee_id) }; let vtbls = resolve_vtables_in_fn_ctxt(bcx.fcx, vtbls); match vtbls[bound_index][0] { typeck::vtable_static(impl_did, ref rcvr_substs, rcvr_origins) => { assert!(rcvr_substs.iter().all(|t| !ty::type_needs_infer(*t))); let mth_id = method_with_name(ccx, impl_did, mname.name); let (callee_substs, callee_origins) = combine_impl_and_methods_tps( bcx, mth_id, callee_id, *rcvr_substs, rcvr_origins); let FnData {llfn: lval} = trans_fn_ref_with_vtables(bcx, mth_id, callee_id, callee_substs, Some(callee_origins)); let callee_ty = node_id_type(bcx, callee_id); let llty = type_of_fn_from_ty(ccx, None, callee_ty).ptr_to(); FnData {llfn: PointerCast(bcx, lval, llty)} } _ => { fail!("vtable_param left in monomorphized \ function's vtable substs"); } } } pub fn method_with_name(ccx: &CrateContext, impl_id: ast::DefId, name: ast::Name) -> ast::DefId { { let impl_method_cache = ccx.impl_method_cache.borrow(); let meth_id_opt = impl_method_cache.get().find_copy(&(impl_id, name)); match meth_id_opt { Some(m) => return m, None => {} } } let impls = ccx.tcx.impls.borrow(); let imp = impls.get().find(&impl_id) .expect("could not find impl while translating"); let meth = imp.methods.iter().find(|m| m.ident.name == name) .expect("could not find method while translating"); let mut impl_method_cache = ccx.impl_method_cache.borrow_mut(); impl_method_cache.get().insert((impl_id, name), meth.def_id); meth.def_id } pub fn trans_monomorphized_callee<'a>( bcx: &'a Block<'a>, callee_id: ast::NodeId, base: &ast::Expr, mentry: typeck::method_map_entry, trait_id: ast::DefId, n_method: uint, vtbl: typeck::vtable_origin, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { let _icx = push_ctxt("impl::trans_monomorphized_callee"); return match vtbl { typeck::vtable_static(impl_did, ref rcvr_substs, rcvr_origins) => { let ccx = bcx.ccx(); let mname = ty::trait_method(ccx.tcx, trait_id, n_method).ident; let mth_id = method_with_name(bcx.ccx(), impl_did, mname.name); // obtain the `self` value: let self_ty = monomorphize_type(bcx, mentry.self_ty); let Result {bcx, val} = trans_arg_expr(bcx, self_ty, base, arg_cleanup_scope, DontAutorefArg); // create a concatenated set of substitutions which includes // those from the impl and those from the method: let (callee_substs, callee_origins) = combine_impl_and_methods_tps( bcx, mth_id, callee_id, *rcvr_substs, rcvr_origins); // translate the function let callee = trans_fn_ref_with_vtables(bcx, mth_id, callee_id, callee_substs, Some(callee_origins)); // create a llvalue that represents the fn ptr // HACK should not need the pointer cast (add self in trans_fn_ref_with_vtables). let fn_ty = node_id_type(bcx, callee_id); let llfn_ty = type_of_fn_from_ty(ccx, Some(self_ty), fn_ty).ptr_to(); let llfn_val = PointerCast(bcx, callee.llfn, llfn_ty); // combine the self environment with the rest Callee { bcx: bcx, data: Method(MethodData { llfn: llfn_val, llself: val, }) } } typeck::vtable_param(..) => { fail!("vtable_param left in monomorphized function's vtable substs"); } }; } pub fn combine_impl_and_methods_tps(bcx: &Block, mth_did: ast::DefId, callee_id: ast::NodeId, rcvr_substs: &[ty::t], rcvr_origins: typeck::vtable_res) -> (~[ty::t], typeck::vtable_res) { /*! * * Creates a concatenated set of substitutions which includes * those from the impl and those from the method. This are * some subtle complications here. Statically, we have a list * of type parameters like `[T0, T1, T2, M1, M2, M3]` where * `Tn` are type parameters that appear on the receiver. For * example, if the receiver is a method parameter `A` with a * bound like `trait` then `Tn` would be `[B,C,D]`. * * The weird part is that the type `A` might now be bound to * any other type, such as `foo`. In that case, the vector * we want is: `[X, M1, M2, M3]`. Therefore, what we do now is * to slice off the method type parameters and append them to * the type parameters from the type that the receiver is * mapped to. */ let ccx = bcx.ccx(); let method = ty::method(ccx.tcx, mth_did); let n_m_tps = method.generics.type_param_defs.len(); let node_substs = node_id_type_params(bcx, callee_id); debug!("rcvr_substs={:?}", rcvr_substs.repr(ccx.tcx)); let ty_substs = vec::append(rcvr_substs.to_owned(), node_substs.tailn(node_substs.len() - n_m_tps)); debug!("n_m_tps={:?}", n_m_tps); debug!("node_substs={:?}", node_substs.repr(ccx.tcx)); debug!("ty_substs={:?}", ty_substs.repr(ccx.tcx)); // Now, do the same work for the vtables. The vtables might not // exist, in which case we need to make them. let r_m_origins = match node_vtables(bcx, callee_id) { Some(vt) => vt, None => @vec::from_elem(node_substs.len(), @~[]) }; let vtables = @vec::append(rcvr_origins.to_owned(), r_m_origins.tailn(r_m_origins.len() - n_m_tps)); return (ty_substs, vtables); } pub fn trans_trait_callee<'a>( bcx: &'a Block<'a>, callee_id: ast::NodeId, n_method: uint, self_expr: &ast::Expr, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { /*! * Create a method callee where the method is coming from a trait * object (e.g., @Trait type). In this case, we must pull the fn * pointer out of the vtable that is packaged up with the object. * Objects are represented as a pair, so we first evaluate the self * expression and then extract the self data and vtable out of the * pair. */ let _icx = push_ctxt("impl::trans_trait_callee"); let mut bcx = bcx; // Translate self_datum and take ownership of the value by // converting to an rvalue. let self_datum = unpack_datum!( bcx, expr::trans(bcx, self_expr)); let self_datum = unpack_datum!( bcx, self_datum.to_rvalue_datum(bcx, "trait_callee")); // Convert to by-ref since `trans_trait_callee_from_llval` wants it // that way. let self_datum = unpack_datum!( bcx, self_datum.to_ref_datum(bcx)); // Arrange cleanup in case something should go wrong before the // actual call occurs. let llval = self_datum.add_clean(bcx.fcx, arg_cleanup_scope); let callee_ty = node_id_type(bcx, callee_id); trans_trait_callee_from_llval(bcx, callee_ty, n_method, llval) } pub fn trans_trait_callee_from_llval<'a>(bcx: &'a Block<'a>, callee_ty: ty::t, n_method: uint, llpair: ValueRef) -> Callee<'a> { /*! * Same as `trans_trait_callee()` above, except that it is given * a by-ref pointer to the object pair. */ let _icx = push_ctxt("impl::trans_trait_callee"); let ccx = bcx.ccx(); // Load the data pointer from the object. debug!("(translating trait callee) loading second index from pair"); let llboxptr = GEPi(bcx, llpair, [0u, abi::trt_field_box]); let llbox = Load(bcx, llboxptr); let llself = PointerCast(bcx, llbox, Type::opaque_box(ccx).ptr_to()); // Load the function from the vtable and cast it to the expected type. debug!("(translating trait callee) loading method"); let llcallee_ty = type_of_fn_from_ty(ccx, None, callee_ty); let llvtable = Load(bcx, PointerCast(bcx, GEPi(bcx, llpair, [0u, abi::trt_field_vtable]), Type::vtable().ptr_to().ptr_to())); let mptr = Load(bcx, GEPi(bcx, llvtable, [0u, n_method + 1])); let mptr = PointerCast(bcx, mptr, llcallee_ty.ptr_to()); return Callee { bcx: bcx, data: Method(MethodData { llfn: mptr, llself: llself, }) }; } pub fn vtable_id(ccx: @CrateContext, origin: &typeck::vtable_origin) -> mono_id { match origin { &typeck::vtable_static(impl_id, ref substs, sub_vtables) => { let psubsts = param_substs { tys: (*substs).clone(), vtables: Some(sub_vtables), self_ty: None, self_vtables: None }; monomorphize::make_mono_id( ccx, impl_id, &psubsts) } // can't this be checked at the callee? _ => fail!("vtable_id") } } /// Creates a returns a dynamic vtable for the given type and vtable origin. /// This is used only for objects. pub fn get_vtable(bcx: &Block, self_ty: ty::t, origins: typeck::vtable_param_res) -> ValueRef { let ccx = bcx.ccx(); let _icx = push_ctxt("impl::get_vtable"); // Check the cache. let hash_id = (self_ty, vtable_id(ccx, &origins[0])); { let vtables = ccx.vtables.borrow(); match vtables.get().find(&hash_id) { Some(&val) => { return val } None => { } } } // Not in the cache. Actually build it. let methods = origins.flat_map(|origin| { match *origin { typeck::vtable_static(id, ref substs, sub_vtables) => { emit_vtable_methods(bcx, id, *substs, sub_vtables) } _ => ccx.sess.bug("get_vtable: expected a static origin"), } }); // Generate a type descriptor for the vtable. let tydesc = get_tydesc(ccx, self_ty); glue::lazily_emit_all_tydesc_glue(ccx, tydesc); let vtable = make_vtable(ccx, tydesc, methods); let mut vtables = ccx.vtables.borrow_mut(); vtables.get().insert(hash_id, vtable); return vtable; } /// Helper function to declare and initialize the vtable. pub fn make_vtable(ccx: &CrateContext, tydesc: &tydesc_info, ptrs: &[ValueRef]) -> ValueRef { unsafe { let _icx = push_ctxt("impl::make_vtable"); let mut components = ~[ tydesc.tydesc ]; for &ptr in ptrs.iter() { components.push(ptr) } let tbl = C_struct(components, false); let sym = token::gensym("vtable"); let vt_gvar = format!("vtable{}", sym).with_c_str(|buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(tbl).to_ref(), buf) }); llvm::LLVMSetInitializer(vt_gvar, tbl); llvm::LLVMSetGlobalConstant(vt_gvar, lib::llvm::True); lib::llvm::SetLinkage(vt_gvar, lib::llvm::InternalLinkage); vt_gvar } } fn emit_vtable_methods(bcx: &Block, impl_id: ast::DefId, substs: &[ty::t], vtables: typeck::vtable_res) -> ~[ValueRef] { let ccx = bcx.ccx(); let tcx = ccx.tcx; let trt_id = match ty::impl_trait_ref(tcx, impl_id) { Some(t_id) => t_id.def_id, None => ccx.sess.bug("make_impl_vtable: don't know how to \ make a vtable for a type impl!") }; ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trt_id); let trait_method_def_ids = ty::trait_method_def_ids(tcx, trt_id); trait_method_def_ids.map(|method_def_id| { let ident = ty::method(tcx, *method_def_id).ident; // The substitutions we have are on the impl, so we grab // the method type from the impl to substitute into. let m_id = method_with_name(ccx, impl_id, ident.name); let m = ty::method(tcx, m_id); debug!("(making impl vtable) emitting method {} at subst {}", m.repr(tcx), substs.repr(tcx)); if m.generics.has_type_params() || ty::type_has_self(ty::mk_bare_fn(tcx, m.fty.clone())) { debug!("(making impl vtable) method has self or type params: {}", tcx.sess.str_of(ident)); C_null(Type::nil().ptr_to()) } else { trans_fn_ref_with_vtables(bcx, m_id, 0, substs, Some(vtables)).llfn } }) } pub fn trans_trait_cast<'a>(bcx: &'a Block<'a>, datum: Datum, id: ast::NodeId, dest: expr::Dest) -> &'a Block<'a> { /*! * Generates the code to convert from a pointer (`~T`, `&T`, etc) * into an object (`~Trait`, `&Trait`, etc). This means creating a * pair where the first word is the vtable and the second word is * the pointer. */ let mut bcx = bcx; let _icx = push_ctxt("impl::trans_cast"); let lldest = match dest { Ignore => { return datum.clean(bcx, "trait_cast", id); } SaveIn(dest) => dest }; let ccx = bcx.ccx(); let v_ty = datum.ty; let llbox_ty = type_of(bcx.ccx(), datum.ty); // Store the pointer into the first half of pair. let mut llboxdest = GEPi(bcx, lldest, [0u, abi::trt_field_box]); llboxdest = PointerCast(bcx, llboxdest, llbox_ty.ptr_to()); bcx = datum.store_to(bcx, llboxdest); // Store the vtable into the second half of pair. // This is structured a bit funny because of dynamic borrow failures. let origins = { let res = { let vtable_map = ccx.maps.vtable_map.borrow(); *vtable_map.get().get(&id) }; let res = resolve_vtables_in_fn_ctxt(bcx.fcx, res); res[0] }; let vtable = get_vtable(bcx, v_ty, origins); let llvtabledest = GEPi(bcx, lldest, [0u, abi::trt_field_vtable]); let llvtabledest = PointerCast(bcx, llvtabledest, val_ty(vtable).ptr_to()); Store(bcx, vtable, llvtabledest); bcx }