#![feature(no_core, lang_items, never_type, linkage, extern_types, thread_local, repr_simd)] #![no_core] #![allow(dead_code, non_camel_case_types, internal_features)] extern crate mini_core; use mini_core::libc::*; use mini_core::*; macro_rules! assert { ($e:expr) => { if !$e { panic(stringify!(!$e)); } }; } macro_rules! assert_eq { ($l:expr, $r: expr) => { if $l != $r { panic(stringify!($l != $r)); } }; } #[lang = "termination"] trait Termination { fn report(self) -> i32; } impl Termination for () { fn report(self) -> i32 { unsafe { NUM = 6 * 7 + 1 + (1u8 == 1u8) as u8; // 44 assert_eq!(*NUM_REF as i32, 44); } 0 } } trait SomeTrait { fn object_safe(&self); } impl SomeTrait for &'static str { fn object_safe(&self) { unsafe { puts(*self as *const str as *const i8); } } } struct NoisyDrop { text: &'static str, inner: NoisyDropInner, } struct NoisyDropUnsized { inner: NoisyDropInner, text: str, } struct NoisyDropInner; impl Drop for NoisyDrop { fn drop(&mut self) { unsafe { puts(self.text as *const str as *const i8); } } } impl Drop for NoisyDropInner { fn drop(&mut self) { unsafe { puts("Inner got dropped!\0" as *const str as *const i8); } } } impl SomeTrait for NoisyDrop { fn object_safe(&self) {} } enum Ordering { Less = -1, Equal = 0, Greater = 1, } #[lang = "start"] fn start( main: fn() -> T, argc: isize, argv: *const *const u8, _sigpipe: u8, ) -> isize { if argc == 3 { unsafe { puts(*argv as *const i8); } unsafe { puts(*((argv as usize + intrinsics::size_of::<*const u8>()) as *const *const i8)); } unsafe { puts(*((argv as usize + 2 * intrinsics::size_of::<*const u8>()) as *const *const i8)); } } main().report() as isize } static mut NUM: u8 = 6 * 7; // FIXME: Use `SyncUnsafeCell` instead of allowing `static_mut_ref` lint #[allow(static_mut_ref)] static NUM_REF: &'static u8 = unsafe { &NUM }; unsafe fn zeroed() -> T { let mut uninit = MaybeUninit { uninit: () }; intrinsics::write_bytes(&mut uninit.value.value as *mut T, 0, 1); uninit.value.value } fn take_f32(_f: f32) {} fn take_unique(_u: Unique<()>) {} fn return_u128_pair() -> (u128, u128) { (0, 0) } fn call_return_u128_pair() { return_u128_pair(); } #[repr(C)] pub struct bool_11 { field0: bool, field1: bool, field2: bool, field3: bool, field4: bool, field5: bool, field6: bool, field7: bool, field8: bool, field9: bool, field10: bool, } extern "C" fn bool_struct_in_11(_arg0: bool_11) {} #[allow(unreachable_code)] // FIXME false positive fn main() { take_unique(Unique { pointer: unsafe { NonNull(1 as *mut ()) }, _marker: PhantomData }); take_f32(0.1); call_return_u128_pair(); bool_struct_in_11(bool_11 { field0: true, field1: true, field2: true, field3: true, field4: true, field5: true, field6: true, field7: true, field8: true, field9: true, field10: true, }); let slice = &[0, 1] as &[i32]; let slice_ptr = slice as *const [i32] as *const i32; assert_eq!(slice_ptr as usize % 4, 0); unsafe { printf("Hello %s\n\0" as *const str as *const i8, "printf\0" as *const str as *const i8); let hello: &[u8] = b"Hello\0" as &[u8; 6]; let ptr: *const i8 = hello as *const [u8] as *const i8; puts(ptr); let world: Box<&str> = Box::new("World!\0"); puts(*world as *const str as *const i8); world as Box; assert_eq!(intrinsics::bitreverse(0b10101000u8), 0b00010101u8); assert_eq!(intrinsics::bswap(0xabu8), 0xabu8); assert_eq!(intrinsics::bswap(0xddccu16), 0xccddu16); assert_eq!(intrinsics::bswap(0xffee_ddccu32), 0xccdd_eeffu32); assert_eq!(intrinsics::bswap(0x1234_5678_ffee_ddccu64), 0xccdd_eeff_7856_3412u64); assert_eq!(intrinsics::size_of_val(hello) as u8, 6); let chars = &['C', 'h', 'a', 'r', 's']; let chars = chars as &[char]; assert_eq!(intrinsics::size_of_val(chars) as u8, 4 * 5); let a: &dyn SomeTrait = &"abc\0"; a.object_safe(); assert_eq!(intrinsics::size_of_val(a) as u8, 16); assert_eq!(intrinsics::size_of_val(&0u32) as u8, 4); assert_eq!(intrinsics::min_align_of::() as u8, 2); assert_eq!( intrinsics::min_align_of_val(&a) as u8, intrinsics::min_align_of::<&str>() as u8 ); assert!(!intrinsics::needs_drop::()); assert!(!intrinsics::needs_drop::<[u8]>()); assert!(intrinsics::needs_drop::()); assert!(intrinsics::needs_drop::()); Unique { pointer: NonNull(1 as *mut &str), _marker: PhantomData } as Unique; struct MyDst(T); intrinsics::size_of_val(&MyDst([0u8; 4]) as &MyDst<[u8]>); struct Foo { x: u8, y: !, } unsafe fn uninitialized() -> T { MaybeUninit { uninit: () }.value.value } zeroed::<(u8, u8)>(); #[allow(unreachable_code)] { if false { zeroed::(); zeroed::(); uninitialized::(); } } } let _ = Box::new(NoisyDrop { text: "Boxed outer got dropped!\0", inner: NoisyDropInner }) as Box; const FUNC_REF: Option = Some(main); match FUNC_REF { Some(_) => {} None => assert!(false), } match Ordering::Less { Ordering::Less => {} _ => assert!(false), } [NoisyDropInner, NoisyDropInner]; let x = &[0u32, 42u32] as &[u32]; match x { [] => assert_eq!(0u32, 1), [_, ref y @ ..] => assert_eq!(&x[1] as *const u32 as usize, &y[0] as *const u32 as usize), } assert_eq!(((|()| 42u8) as fn(()) -> u8)(()), 42); #[cfg(not(any(jit, windows)))] { extern "C" { #[linkage = "extern_weak"] static ABC: *const u8; } { extern "C" { #[linkage = "extern_weak"] static ABC: *const u8; } } unsafe { assert_eq!(ABC as usize, 0); } } &mut (|| Some(0 as *const ())) as &mut dyn FnMut() -> Option<*const ()>; let f = 1000.0; assert_eq!(f as u8, 255); let f2 = -1000.0; assert_eq!(f2 as i8, -128); assert_eq!(f2 as u8, 0); let amount = 0; assert_eq!(1u128 << amount, 1); static ANOTHER_STATIC: &u8 = &A_STATIC; assert_eq!(*ANOTHER_STATIC, 42); check_niche_behavior(); extern "C" { type ExternType; } struct ExternTypeWrapper { _a: ExternType, } let nullptr = 0 as *const (); let extern_nullptr = nullptr as *const ExternTypeWrapper; extern_nullptr as *const (); let slice_ptr = &[] as *const [u8]; slice_ptr as *const u8; let repeat = [Some(42); 2]; assert_eq!(repeat[0], Some(42)); assert_eq!(repeat[1], Some(42)); from_decimal_string(); #[cfg(all(not(jit), not(all(windows, target_env = "gnu"))))] test_tls(); #[cfg(all( not(jit), not(no_unstable_features), target_arch = "x86_64", any(target_os = "linux", target_os = "macos") ))] unsafe { global_asm_test(); } // Both statics have a reference that points to the same anonymous allocation. static REF1: &u8 = &42; static REF2: &u8 = REF1; assert_eq!(*REF1, *REF2); #[repr(simd)] struct V([f64; 2]); let f = V([0.0, 1.0]); let _a = f.0[0]; stack_val_align(); } #[inline(never)] fn stack_val_align() { #[repr(align(8192))] struct Foo(u8); let a = Foo(0); assert_eq!(&a as *const Foo as usize % 8192, 0); } #[cfg(all( not(jit), not(no_unstable_features), target_arch = "x86_64", any(target_os = "linux", target_os = "macos") ))] extern "C" { fn global_asm_test(); } #[cfg(all(not(jit), not(no_unstable_features), target_arch = "x86_64", target_os = "linux"))] global_asm! { " .global global_asm_test global_asm_test: // comment that would normally be removed by LLVM ret " } #[cfg(all(not(jit), not(no_unstable_features), target_arch = "x86_64", target_os = "macos"))] global_asm! { " .global _global_asm_test _global_asm_test: // comment that would normally be removed by LLVM ret " } #[repr(C)] enum c_void { _1, _2, } type c_int = i32; type c_ulong = u64; type pthread_t = c_ulong; #[repr(C)] struct pthread_attr_t { __size: [u64; 7], } #[link(name = "pthread")] #[cfg(unix)] extern "C" { fn pthread_attr_init(attr: *mut pthread_attr_t) -> c_int; fn pthread_create( native: *mut pthread_t, attr: *const pthread_attr_t, f: extern "C" fn(_: *mut c_void) -> *mut c_void, value: *mut c_void, ) -> c_int; fn pthread_join(native: pthread_t, value: *mut *mut c_void) -> c_int; } type DWORD = u32; type LPDWORD = *mut u32; type LPVOID = *mut c_void; type HANDLE = *mut c_void; #[link(name = "msvcrt")] #[cfg(windows)] extern "C" { fn WaitForSingleObject(hHandle: LPVOID, dwMilliseconds: DWORD) -> DWORD; fn CreateThread( lpThreadAttributes: LPVOID, // Technically LPSECURITY_ATTRIBUTES, but we don't use it anyway dwStackSize: usize, lpStartAddress: extern "C" fn(_: *mut c_void) -> *mut c_void, lpParameter: LPVOID, dwCreationFlags: DWORD, lpThreadId: LPDWORD, ) -> HANDLE; } struct Thread { #[cfg(windows)] handle: HANDLE, #[cfg(unix)] handle: pthread_t, } impl Thread { unsafe fn create(f: extern "C" fn(_: *mut c_void) -> *mut c_void) -> Self { #[cfg(unix)] { let mut attr: pthread_attr_t = zeroed(); let mut thread: pthread_t = 0; if pthread_attr_init(&mut attr) != 0 { assert!(false); } if pthread_create(&mut thread, &attr, f, 0 as *mut c_void) != 0 { assert!(false); } Thread { handle: thread } } #[cfg(windows)] { let handle = CreateThread(0 as *mut c_void, 0, f, 0 as *mut c_void, 0, 0 as *mut u32); if (handle as u64) == 0 { assert!(false); } Thread { handle } } } unsafe fn join(self) { #[cfg(unix)] { let mut res = 0 as *mut c_void; pthread_join(self.handle, &mut res); } #[cfg(windows)] { // The INFINITE macro is used to signal operations that do not timeout. let infinite = 0xffffffff; assert!(WaitForSingleObject(self.handle, infinite) == 0); } } } #[thread_local] #[cfg(not(jit))] static mut TLS: u8 = 42; #[cfg(not(jit))] extern "C" fn mutate_tls(_: *mut c_void) -> *mut c_void { unsafe { TLS = 0; } 0 as *mut c_void } #[cfg(not(jit))] fn test_tls() { unsafe { assert_eq!(TLS, 42); let thread = Thread::create(mutate_tls); thread.join(); // TLS of main thread must not have been changed by the other thread. assert_eq!(TLS, 42); puts("TLS works!\n\0" as *const str as *const i8); } } // Copied ui/issues/issue-61696.rs pub enum Infallible {} // The check that the `bool` field of `V1` is encoding a "niche variant" // (i.e. not `V1`, so `V3` or `V4`) used to be mathematically incorrect, // causing valid `V1` values to be interpreted as other variants. pub enum E1 { V1 { f: bool }, V2 { f: Infallible }, V3, V4, } // Computing the discriminant used to be done using the niche type (here `u8`, // from the `bool` field of `V1`), overflowing for variants with large enough // indices (`V3` and `V4`), causing them to be interpreted as other variants. #[rustfmt::skip] pub enum E2 { V1 { f: bool }, /*_00*/ _01(X), _02(X), _03(X), _04(X), _05(X), _06(X), _07(X), _08(X), _09(X), _0A(X), _0B(X), _0C(X), _0D(X), _0E(X), _0F(X), _10(X), _11(X), _12(X), _13(X), _14(X), _15(X), _16(X), _17(X), _18(X), _19(X), _1A(X), _1B(X), _1C(X), _1D(X), _1E(X), _1F(X), _20(X), _21(X), _22(X), _23(X), _24(X), _25(X), _26(X), _27(X), _28(X), _29(X), _2A(X), _2B(X), _2C(X), _2D(X), _2E(X), _2F(X), _30(X), _31(X), _32(X), _33(X), _34(X), _35(X), _36(X), _37(X), _38(X), _39(X), _3A(X), _3B(X), _3C(X), _3D(X), _3E(X), _3F(X), _40(X), _41(X), _42(X), _43(X), _44(X), _45(X), _46(X), _47(X), _48(X), _49(X), _4A(X), _4B(X), _4C(X), _4D(X), _4E(X), _4F(X), _50(X), _51(X), _52(X), _53(X), _54(X), _55(X), _56(X), _57(X), _58(X), _59(X), _5A(X), _5B(X), _5C(X), _5D(X), _5E(X), _5F(X), _60(X), _61(X), _62(X), _63(X), _64(X), _65(X), _66(X), _67(X), _68(X), _69(X), _6A(X), _6B(X), _6C(X), _6D(X), _6E(X), _6F(X), _70(X), _71(X), _72(X), _73(X), _74(X), _75(X), _76(X), _77(X), _78(X), _79(X), _7A(X), _7B(X), _7C(X), _7D(X), _7E(X), _7F(X), _80(X), _81(X), _82(X), _83(X), _84(X), _85(X), _86(X), _87(X), _88(X), _89(X), _8A(X), _8B(X), _8C(X), _8D(X), _8E(X), _8F(X), _90(X), _91(X), _92(X), _93(X), _94(X), _95(X), _96(X), _97(X), _98(X), _99(X), _9A(X), _9B(X), _9C(X), _9D(X), _9E(X), _9F(X), _A0(X), _A1(X), _A2(X), _A3(X), _A4(X), _A5(X), _A6(X), _A7(X), _A8(X), _A9(X), _AA(X), _AB(X), _AC(X), _AD(X), _AE(X), _AF(X), _B0(X), _B1(X), _B2(X), _B3(X), _B4(X), _B5(X), _B6(X), _B7(X), _B8(X), _B9(X), _BA(X), _BB(X), _BC(X), _BD(X), _BE(X), _BF(X), _C0(X), _C1(X), _C2(X), _C3(X), _C4(X), _C5(X), _C6(X), _C7(X), _C8(X), _C9(X), _CA(X), _CB(X), _CC(X), _CD(X), _CE(X), _CF(X), _D0(X), _D1(X), _D2(X), _D3(X), _D4(X), _D5(X), _D6(X), _D7(X), _D8(X), _D9(X), _DA(X), _DB(X), _DC(X), _DD(X), _DE(X), _DF(X), _E0(X), _E1(X), _E2(X), _E3(X), _E4(X), _E5(X), _E6(X), _E7(X), _E8(X), _E9(X), _EA(X), _EB(X), _EC(X), _ED(X), _EE(X), _EF(X), _F0(X), _F1(X), _F2(X), _F3(X), _F4(X), _F5(X), _F6(X), _F7(X), _F8(X), _F9(X), _FA(X), _FB(X), _FC(X), _FD(X), _FE(X), _FF(X), V3, V4, } fn check_niche_behavior() { if let E1::V2 { .. } = (E1::V1 { f: true }) { intrinsics::abort(); } if let E2::V1 { .. } = E2::V3:: { intrinsics::abort(); } } fn from_decimal_string() { loop { let multiplier = 1; take_multiplier_ref(&multiplier); if multiplier == 1 { break; } unreachable(); } } fn take_multiplier_ref(_multiplier: &u128) {} fn unreachable() -> ! { panic("unreachable") }