/* Module: float */ // Currently this module supports from -lm // C95 + log2 + log1p + trunc + round + rint export t; export consts; export acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod, frexp, ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin, sinh, sqrt, tan, tanh, trunc; export to_str_common, to_str_exact, to_str, from_str; export lt, le, eq, ne, gt, eq; export NaN, isNaN, infinity, neg_infinity; export pow_uint_to_uint_as_float; export min, max; export add, sub, mul, div; export positive, negative, nonpositive, nonnegative; import mtypes::m_float; import ctypes::c_int; import ptr; // PORT This must match in width according to architecture import f64; import m_float = f64; type t = m_float; /** * Section: String Conversions */ /* Function: to_str_common Converts a float to a string Parameters: num - The float value digits - The number of significant digits exact - Whether to enforce the exact number of significant digits */ fn to_str_common(num: float, digits: uint, exact: bool) -> str { let (num, accum) = num < 0.0 ? (-num, "-") : (num, ""); let trunc = num as uint; let frac = num - (trunc as float); accum += uint::str(trunc); if frac == 0.0 || digits == 0u { ret accum; } accum += "."; let i = digits; let epsilon = 1. / pow_uint_to_uint_as_float(10u, i); while i > 0u && (frac >= epsilon || exact) { frac *= 10.0; epsilon *= 10.0; let digit = frac as uint; accum += uint::str(digit); frac -= digit as float; i -= 1u; } ret accum; } /* Function: to_str Converts a float to a string with exactly the number of provided significant digits Parameters: num - The float value digits - The number of significant digits */ fn to_str_exact(num: float, digits: uint) -> str { to_str_common(num, digits, true) } /* Function: to_str Converts a float to a string with a maximum number of significant digits Parameters: num - The float value digits - The number of significant digits */ fn to_str(num: float, digits: uint) -> str { to_str_common(num, digits, false) } /* Function: from_str Convert a string to a float This function accepts strings such as * "3.14" * "+3.14", equivalent to "3.14" * "-3.14" * "2.5E10", or equivalently, "2.5e10" * "2.5E-10" * "", or, equivalently, "." (understood as 0) * "5." * ".5", or, equivalently, "0.5" Leading and trailing whitespace are ignored. Parameters: num - A string, possibly empty. Returns: If the string did not represent a valid number. Otherwise, the floating-point number represented [num]. */ fn from_str(num: str) -> float { let num = str::trim(num); let pos = 0u; //Current byte position in the string. //Used to walk the string in O(n). let len = str::byte_len(num); //Length of the string, in bytes. if len == 0u { ret 0.; } let total = 0f; //Accumulated result let c = 'z'; //Latest char. //The string must start with one of the following characters. alt str::char_at(num, 0u) { '-' | '+' | '0' to '9' | '.' {} _ { ret NaN; } } //Determine if first char is '-'/'+'. Set [pos] and [neg] accordingly. let neg = false; //Sign of the result alt str::char_at(num, 0u) { '-' { neg = true; pos = 1u; } '+' { pos = 1u; } _ {} } //Examine the following chars until '.', 'e', 'E' while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; pos = char_range.next; alt c { '0' to '9' { total = total * 10f; total += ((c as int) - ('0' as int)) as float; } '.' | 'e' | 'E' { break; } _ { ret NaN; } } } if c == '.' {//Examine decimal part let decimal = 1f; while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; pos = char_range.next; alt c { '0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' { decimal /= 10f; total += (((c as int) - ('0' as int)) as float)*decimal; } 'e' | 'E' { break; } _ { ret NaN; } } } } if (c == 'e') | (c == 'E') {//Examine exponent let exponent = 0u; let neg_exponent = false; if(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; alt c { '+' { pos = char_range.next; } '-' { pos = char_range.next; neg_exponent = true; } _ {} } while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; alt c { '0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' { exponent *= 10u; exponent += ((c as uint) - ('0' as uint)); } _ { break; } } pos = char_range.next; } let multiplier = pow_uint_to_uint_as_float(10u, exponent); //Note: not [int::pow], otherwise, we'll quickly //end up with a nice overflow if neg_exponent { total = total / multiplier; } else { total = total * multiplier; } } else { ret NaN; } } if(pos < len) { ret NaN; } else { if(neg) { total *= -1f; } ret total; } } /** * Section: Arithmetics */ /* Function: pow_uint_to_uint_as_float Compute the exponentiation of an integer by another integer as a float. Parameters: x - The base. pow - The exponent. Returns: of both `x` and `pow` are `0u`, otherwise `x^pow`. */ fn pow_uint_to_uint_as_float(x: uint, pow: uint) -> float { if x == 0u { if pow == 0u { ret NaN; } ret 0.; } let my_pow = pow; let total = 1f; let multiplier = x as float; while (my_pow > 0u) { if my_pow % 2u == 1u { total = total * multiplier; } my_pow /= 2u; multiplier *= multiplier; } ret total; } /* Const: NaN */ const NaN: float = 0./0.; /* Const: infinity */ const infinity: float = 1./0.; /* Const: neg_infinity */ const neg_infinity: float = -1./0.; /* Predicate: isNaN */ pure fn isNaN(f: float) -> bool { f != f } /* Function: add */ pure fn add(x: float, y: float) -> float { ret x + y; } /* Function: sub */ pure fn sub(x: float, y: float) -> float { ret x - y; } /* Function: mul */ pure fn mul(x: float, y: float) -> float { ret x * y; } /* Function: div */ pure fn div(x: float, y: float) -> float { ret x / y; } /* Function: rem */ pure fn rem(x: float, y: float) -> float { ret x % y; } /* Predicate: lt */ pure fn lt(x: float, y: float) -> bool { ret x < y; } /* Predicate: le */ pure fn le(x: float, y: float) -> bool { ret x <= y; } /* Predicate: eq */ pure fn eq(x: float, y: float) -> bool { ret x == y; } /* Predicate: ne */ pure fn ne(x: float, y: float) -> bool { ret x != y; } /* Predicate: ge */ pure fn ge(x: float, y: float) -> bool { ret x >= y; } /* Predicate: gt */ pure fn gt(x: float, y: float) -> bool { ret x > y; } /* Predicate: positive Returns true if `x` is a positive number, including +0.0 and +Infinity. */ pure fn positive(x: float) -> bool { ret x > 0. || (1./x) == infinity; } /* Predicate: negative Returns true if `x` is a negative number, including -0.0 and -Infinity. */ pure fn negative(x: float) -> bool { ret x < 0. || (1./x) == neg_infinity; } /* Predicate: nonpositive Returns true if `x` is a negative number, including -0.0 and -Infinity. (This is the same as `float::negative`.) */ pure fn nonpositive(x: float) -> bool { ret x < 0. || (1./x) == neg_infinity; } /* Predicate: nonnegative Returns true if `x` is a positive number, including +0.0 and +Infinity. (This is the same as `float::positive`.) */ pure fn nonnegative(x: float) -> bool { ret x > 0. || (1./x) == infinity; } /* Module: consts */ mod consts { /* Const: pi Archimedes' constant */ const pi: float = 3.14159265358979323846264338327950288; /* Const: frac_pi_2 pi/2.0 */ const frac_pi_2: float = 1.57079632679489661923132169163975144; /* Const: frac_pi_4 pi/4.0 */ const frac_pi_4: float = 0.785398163397448309615660845819875721; /* Const: frac_1_pi 1.0/pi */ const frac_1_pi: float = 0.318309886183790671537767526745028724; /* Const: frac_2_pi 2.0/pi */ const frac_2_pi: float = 0.636619772367581343075535053490057448; /* Const: frac_2_sqrtpi 2.0/sqrt(pi) */ const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517; /* Const: sqrt2 sqrt(2.0) */ const sqrt2: float = 1.41421356237309504880168872420969808; /* Const: frac_1_sqrt2 1.0/sqrt(2.0) */ const frac_1_sqrt2: float = 0.707106781186547524400844362104849039; /* Const: e Euler's number */ const e: float = 2.71828182845904523536028747135266250; /* Const: log2_e log2(e) */ const log2_e: float = 1.44269504088896340735992468100189214; /* Const: log10_e log10(e) */ const log10_e: float = 0.434294481903251827651128918916605082; /* Const: ln_2 ln(2.0) */ const ln_2: float = 0.693147180559945309417232121458176568; /* Const: ln_10 ln(10.0) */ const ln_10: float = 2.30258509299404568401799145468436421; } // FIXME min/max type specialize via libm when overloading works // (in theory fmax/fmin, fmaxf, fminf /should/ be faster) /* Function: min Returns the minimum of two values */ pure fn min(x: T, y: T) -> T { x < y ? x : y } /* Function: max Returns the maximum of two values */ pure fn max(x: T, y: T) -> T { x < y ? y : x } /* Function: acos Returns the arccosine of an angle (measured in rad) */ pure fn acos(x: float) -> float { ret m_float::acos(x as m_float) as float } /* Function: asin Returns the arcsine of an angle (measured in rad) */ pure fn asin(x: float) -> float { ret m_float::asin(x as m_float) as float } /* Function: atan Returns the arctangents of an angle (measured in rad) */ pure fn atan(x: float) -> float { ret m_float::atan(x as m_float) as float } /* Function: atan2 Returns the arctangent of an angle (measured in rad) */ pure fn atan2(y: float, x: float) -> float { ret m_float::atan2(y as m_float, x as m_float) as float } /* Function: ceil Returns the smallest integral value less than or equal to `n` */ pure fn ceil(n: float) -> float { ret m_float::ceil(n as m_float) as float } /* Function: cos Returns the cosine of an angle `x` (measured in rad) */ pure fn cos(x: float) -> float { ret m_float::cos(x as m_float) as float } /* Function: cosh Returns the hyperbolic cosine of `x` */ pure fn cosh(x: float) -> float { ret m_float::cosh(x as m_float) as float } /* Function: exp Returns `consts::e` to the power of `n* */ pure fn exp(n: float) -> float { ret m_float::exp(n as m_float) as float } /* Function: abs Returns the absolute value of `n` */ pure fn abs(n: float) -> float { ret m_float::abs(n as m_float) as float } /* Function: floor Returns the largest integral value less than or equal to `n` */ pure fn floor(n: float) -> float { ret m_float::floor(n as m_float) as float } /* Function: fmod Returns the floating-point remainder of `x/y` */ pure fn fmod(x: float, y: float) -> float { ret m_float::fmod(x as m_float, y as m_float) as float } /* Function: ln Returns the natural logaritm of `n` */ pure fn ln(n: float) -> float { ret m_float::ln(n as m_float) as float } /* Function: ldexp Returns `x` multiplied by 2 to the power of `n` */ pure fn ldexp(n: float, i: int) -> float { ret m_float::ldexp(n as m_float, i as c_int) as float } /* Function: ln1p Returns the natural logarithm of `1+n` accurately, even for very small values of `n` */ pure fn ln1p(n: float) -> float { ret m_float::ln1p(n as m_float) as float } /* Function: log10 Returns the logarithm to base 10 of `n` */ pure fn log10(n: float) -> float { ret m_float::log10(n as m_float) as float } /* Function: log2 Returns the logarithm to base 2 of `n` */ pure fn log2(n: float) -> float { ret m_float::log2(n as m_float) as float } /* Function: modf Breaks `n` into integral and fractional parts such that both have the same sign as `n` The integral part is stored in `iptr`. Returns: The fractional part of `n` */ #[no(warn_trivial_casts)] // FIXME Implement pure fn modf(n: float, &iptr: float) -> float { unsafe { ret m_float::modf(n as m_float, ptr::addr_of(iptr) as *m_float) as float } } /* Function: frexp Breaks `n` into a normalized fraction and an integral power of 2 The inegral part is stored in iptr. The functions return a number x such that x has a magnitude in the interval [1/2, 1) or 0, and `n == x*(2 to the power of exp)`. Returns: The fractional part of `n` */ pure fn frexp(n: float, &exp: c_int) -> float { ret m_float::frexp(n as m_float, exp) as float } /* Function: pow */ pure fn pow(v: float, e: float) -> float { ret m_float::pow(v as m_float, e as m_float) as float } /* Function: rint Returns the integral value nearest to `x` (according to the prevailing rounding mode) in floating-point format */ pure fn rint(x: float) -> float { ret m_float::rint(x as m_float) as float } /* Function: round Return the integral value nearest to `x` rounding half-way cases away from zero, regardless of the current rounding direction. */ pure fn round(x: float) -> float { ret m_float::round(x as m_float) as float } /* Function: sin Returns the sine of an angle `x` (measured in rad) */ pure fn sin(x: float) -> float { ret m_float::sin(x as m_float) as float } /* Function: sinh Returns the hyperbolic sine of an angle `x` (measured in rad) */ pure fn sinh(x: float) -> float { ret m_float::sinh(x as m_float) as float } /* Function: sqrt Returns the square root of `x` */ pure fn sqrt(x: float) -> float { ret m_float::sqrt(x as m_float) as float } /* Function: tan Returns the tangent of an angle `x` (measured in rad) */ pure fn tan(x: float) -> float { ret m_float::tan(x as m_float) as float } /* Function: tanh Returns the hyperbolic tangent of an angle `x` (measured in rad) */ pure fn tanh(x: float) -> float { ret m_float::tanh(x as m_float) as float } /* Function: trunc Returns the integral value nearest to but no larger in magnitude than `x` */ pure fn trunc(x: float) -> float { ret m_float::trunc(x as m_float) as float } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //