// Test various cases where the old rules under lifetime elision // yield slightly different results than the new rules. #![allow(dead_code)] trait SomeTrait { fn dummy(&self) { } } struct SomeStruct<'a> { r: Box } fn deref(ss: &T) -> T { // produces the type of a deref without worrying about whether a // move out would actually be legal loop { } } fn load0<'a>(ss: &'a Box) -> Box { // Under old rules, the fully elaborated types of input/output were: // // for<'a,'b> fn(&'a Box) -> Box // // Under new rules the result is: // // for<'a> fn(&'a Box) -> Box // // Therefore, no type error. deref(ss) } fn load1(ss: &dyn SomeTrait) -> &dyn SomeTrait { // Under old rules, the fully elaborated types of input/output were: // // for<'a,'b> fn(&'a (SomeTrait+'b)) -> &'a (SomeTrait+'a) // // Under new rules the result is: // // for<'a> fn(&'a (SomeTrait+'a)) -> &'a (SomeTrait+'a) // // In both cases, returning `ss` is legal. ss } fn load2<'a>(ss: &'a dyn SomeTrait) -> &dyn SomeTrait { // Same as `load1` but with an explicit name thrown in for fun. ss } fn load3<'a,'b>(ss: &'a dyn SomeTrait) -> &'b dyn SomeTrait { // Under old rules, the fully elaborated types of input/output were: // // for<'a,'b,'c>fn(&'a (SomeTrait+'c)) -> &'b (SomeTrait+'a) // // Based on the input/output types, the compiler could infer that // 'c : 'a // 'b : 'a // must hold, and therefore it permitted `&'a (Sometrait+'c)` to be // coerced to `&'b (SomeTrait+'a)`. // // Under the newer defaults, though, we get: // // for<'a,'b> fn(&'a (SomeTrait+'a)) -> &'b (SomeTrait+'b) // // which fails to type check. ss //~^ ERROR cannot infer //~| ERROR cannot infer } fn main() { }