// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The ISAAC random number generator. #![allow(non_camel_case_types)] use core::slice; use core::iter::repeat; use core::num::Wrapping as w; use {Rng, SeedableRng, Rand}; type w32 = w; type w64 = w; const RAND_SIZE_LEN: usize = 8; const RAND_SIZE: u32 = 1 << RAND_SIZE_LEN; const RAND_SIZE_USIZE: usize = 1 << RAND_SIZE_LEN; /// A random number generator that uses the ISAAC algorithm[1]. /// /// The ISAAC algorithm is generally accepted as suitable for /// cryptographic purposes, but this implementation has not be /// verified as such. Prefer a generator like `OsRng` that defers to /// the operating system for cases that need high security. /// /// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number /// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html) #[derive(Copy)] pub struct IsaacRng { cnt: u32, rsl: [w32; RAND_SIZE_USIZE], mem: [w32; RAND_SIZE_USIZE], a: w32, b: w32, c: w32, } static EMPTY: IsaacRng = IsaacRng { cnt: 0, rsl: [w(0); RAND_SIZE_USIZE], mem: [w(0); RAND_SIZE_USIZE], a: w(0), b: w(0), c: w(0), }; impl IsaacRng { /// Create an ISAAC random number generator using the default /// fixed seed. pub fn new_unseeded() -> IsaacRng { let mut rng = EMPTY; rng.init(false); rng } /// Initialises `self`. If `use_rsl` is true, then use the current value /// of `rsl` as a seed, otherwise construct one algorithmically (not /// randomly). fn init(&mut self, use_rsl: bool) { let mut a = w(0x9e3779b9); let mut b = a; let mut c = a; let mut d = a; let mut e = a; let mut f = a; let mut g = a; let mut h = a; macro_rules! mix { () => {{ a = a ^ (b << 11); d = d + a; b = b + c; b = b ^ (c >> 2); e = e + b; c = c + d; c = c ^ (d << 8); f = f + c; d = d + e; d = d ^ (e >> 16); g = g + d; e = e + f; e = e ^ (f << 10); h = h + e; f = f + g; f = f ^ (g >> 4); a = a + f; g = g + h; g = g ^ (h << 8); b = b + g; h = h + a; h = h ^ (a >> 9); c = c + h; a = a + b; }} } for _ in 0..4 { mix!(); } if use_rsl { macro_rules! memloop { ($arr:expr) => {{ for i in (0..RAND_SIZE_USIZE).step_by(8) { a = a + $arr[i]; b = b + $arr[i + 1]; c = c + $arr[i + 2]; d = d + $arr[i + 3]; e = e + $arr[i + 4]; f = f + $arr[i + 5]; g = g + $arr[i + 6]; h = h + $arr[i + 7]; mix!(); self.mem[i] = a; self.mem[i + 1] = b; self.mem[i + 2] = c; self.mem[i + 3] = d; self.mem[i + 4] = e; self.mem[i + 5] = f; self.mem[i + 6] = g; self.mem[i + 7] = h; } }} } memloop!(self.rsl); memloop!(self.mem); } else { for i in (0..RAND_SIZE_USIZE).step_by(8) { mix!(); self.mem[i] = a; self.mem[i + 1] = b; self.mem[i + 2] = c; self.mem[i + 3] = d; self.mem[i + 4] = e; self.mem[i + 5] = f; self.mem[i + 6] = g; self.mem[i + 7] = h; } } self.isaac(); } /// Refills the output buffer (`self.rsl`) #[inline] fn isaac(&mut self) { self.c = self.c + w(1); // abbreviations let mut a = self.a; let mut b = self.b + self.c; const MIDPOINT: usize = RAND_SIZE_USIZE / 2; macro_rules! ind { ($x:expr) => (self.mem[($x >> 2).0 as usize & (RAND_SIZE_USIZE - 1)] ) } let r = [(0, MIDPOINT), (MIDPOINT, 0)]; for &(mr_offset, m2_offset) in &r { macro_rules! rngstepp { ($j:expr, $shift:expr) => {{ let base = $j; let mix = a << $shift; let x = self.mem[base + mr_offset]; a = (a ^ mix) + self.mem[base + m2_offset]; let y = ind!(x) + a + b; self.mem[base + mr_offset] = y; b = ind!(y >> RAND_SIZE_LEN) + x; self.rsl[base + mr_offset] = b; }} } macro_rules! rngstepn { ($j:expr, $shift:expr) => {{ let base = $j; let mix = a >> $shift; let x = self.mem[base + mr_offset]; a = (a ^ mix) + self.mem[base + m2_offset]; let y = ind!(x) + a + b; self.mem[base + mr_offset] = y; b = ind!(y >> RAND_SIZE_LEN) + x; self.rsl[base + mr_offset] = b; }} } for i in (0..MIDPOINT).step_by(4) { rngstepp!(i + 0, 13); rngstepn!(i + 1, 6); rngstepp!(i + 2, 2); rngstepn!(i + 3, 16); } } self.a = a; self.b = b; self.cnt = RAND_SIZE; } } // Cannot be derived because [u32; 256] does not implement Clone impl Clone for IsaacRng { fn clone(&self) -> IsaacRng { *self } } impl Rng for IsaacRng { #[inline] fn next_u32(&mut self) -> u32 { if self.cnt == 0 { // make some more numbers self.isaac(); } self.cnt -= 1; // self.cnt is at most RAND_SIZE, but that is before the // subtraction above. We want to index without bounds // checking, but this could lead to incorrect code if someone // misrefactors, so we check, sometimes. // // (Changes here should be reflected in Isaac64Rng.next_u64.) debug_assert!(self.cnt < RAND_SIZE); // (the % is cheaply telling the optimiser that we're always // in bounds, without unsafe. NB. this is a power of two, so // it optimises to a bitwise mask). self.rsl[(self.cnt % RAND_SIZE) as usize].0 } } impl<'a> SeedableRng<&'a [u32]> for IsaacRng { fn reseed(&mut self, seed: &'a [u32]) { // make the seed into [seed[0], seed[1], ..., seed[seed.len() // - 1], 0, 0, ...], to fill rng.rsl. let seed_iter = seed.iter().cloned().chain(repeat(0)); for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) { *rsl_elem = w(seed_elem); } self.cnt = 0; self.a = w(0); self.b = w(0); self.c = w(0); self.init(true); } /// Create an ISAAC random number generator with a seed. This can /// be any length, although the maximum number of elements used is /// 256 and any more will be silently ignored. A generator /// constructed with a given seed will generate the same sequence /// of values as all other generators constructed with that seed. fn from_seed(seed: &'a [u32]) -> IsaacRng { let mut rng = EMPTY; rng.reseed(seed); rng } } impl Rand for IsaacRng { fn rand(other: &mut R) -> IsaacRng { let mut ret = EMPTY; unsafe { let ptr = ret.rsl.as_mut_ptr() as *mut u8; let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE_USIZE * 4); other.fill_bytes(slice); } ret.cnt = 0; ret.a = w(0); ret.b = w(0); ret.c = w(0); ret.init(true); return ret; } } const RAND_SIZE_64_LEN: usize = 8; const RAND_SIZE_64: usize = 1 << RAND_SIZE_64_LEN; /// A random number generator that uses ISAAC-64[1], the 64-bit /// variant of the ISAAC algorithm. /// /// The ISAAC algorithm is generally accepted as suitable for /// cryptographic purposes, but this implementation has not be /// verified as such. Prefer a generator like `OsRng` that defers to /// the operating system for cases that need high security. /// /// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number /// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html) #[derive(Copy)] pub struct Isaac64Rng { cnt: usize, rsl: [w64; RAND_SIZE_64], mem: [w64; RAND_SIZE_64], a: w64, b: w64, c: w64, } static EMPTY_64: Isaac64Rng = Isaac64Rng { cnt: 0, rsl: [w(0); RAND_SIZE_64], mem: [w(0); RAND_SIZE_64], a: w(0), b: w(0), c: w(0), }; impl Isaac64Rng { /// Create a 64-bit ISAAC random number generator using the /// default fixed seed. pub fn new_unseeded() -> Isaac64Rng { let mut rng = EMPTY_64; rng.init(false); rng } /// Initialises `self`. If `use_rsl` is true, then use the current value /// of `rsl` as a seed, otherwise construct one algorithmically (not /// randomly). fn init(&mut self, use_rsl: bool) { macro_rules! init { ($var:ident) => ( let mut $var = w(0x9e3779b97f4a7c13); ) } init!(a); init!(b); init!(c); init!(d); init!(e); init!(f); init!(g); init!(h); macro_rules! mix { () => {{ a = a - e; f = f ^ (h >> 9); h = h + a; b = b - f; g = g ^ (a << 9); a = a + b; c = c - g; h = h ^ (b >> 23); b = b + c; d = d - h; a = a ^ (c << 15); c = c + d; e = e - a; b = b ^ (d >> 14); d = d + e; f = f - b; c = c ^ (e << 20); e = e + f; g = g - c; d = d ^ (f >> 17); f = f + g; h = h - d; e = e ^ (g << 14); g = g + h; }} } for _ in 0..4 { mix!(); } if use_rsl { macro_rules! memloop { ($arr:expr) => {{ for i in (0..RAND_SIZE_64 / 8).map(|i| i * 8) { a = a + $arr[i]; b = b + $arr[i + 1]; c = c + $arr[i + 2]; d = d + $arr[i + 3]; e = e + $arr[i + 4]; f = f + $arr[i + 5]; g = g + $arr[i + 6]; h = h + $arr[i + 7]; mix!(); self.mem[i] = a; self.mem[i + 1] = b; self.mem[i + 2] = c; self.mem[i + 3] = d; self.mem[i + 4] = e; self.mem[i + 5] = f; self.mem[i + 6] = g; self.mem[i + 7] = h; } }} } memloop!(self.rsl); memloop!(self.mem); } else { for i in (0..RAND_SIZE_64 / 8).map(|i| i * 8) { mix!(); self.mem[i] = a; self.mem[i + 1] = b; self.mem[i + 2] = c; self.mem[i + 3] = d; self.mem[i + 4] = e; self.mem[i + 5] = f; self.mem[i + 6] = g; self.mem[i + 7] = h; } } self.isaac64(); } /// Refills the output buffer (`self.rsl`) fn isaac64(&mut self) { self.c = self.c + w(1); // abbreviations let mut a = self.a; let mut b = self.b + self.c; const MIDPOINT: usize = RAND_SIZE_64 / 2; const MP_VEC: [(usize, usize); 2] = [(0, MIDPOINT), (MIDPOINT, 0)]; macro_rules! ind { ($x:expr) => { *self.mem.get_unchecked((($x >> 3).0 as usize) & (RAND_SIZE_64 - 1)) } } for &(mr_offset, m2_offset) in &MP_VEC { for base in (0..MIDPOINT / 4).map(|i| i * 4) { macro_rules! rngstepp { ($j:expr, $shift:expr) => {{ let base = base + $j; let mix = a ^ (a << $shift); let mix = if $j == 0 {!mix} else {mix}; unsafe { let x = *self.mem.get_unchecked(base + mr_offset); a = mix + *self.mem.get_unchecked(base + m2_offset); let y = ind!(x) + a + b; *self.mem.get_unchecked_mut(base + mr_offset) = y; b = ind!(y >> RAND_SIZE_64_LEN) + x; *self.rsl.get_unchecked_mut(base + mr_offset) = b; } }} } macro_rules! rngstepn { ($j:expr, $shift:expr) => {{ let base = base + $j; let mix = a ^ (a >> $shift); let mix = if $j == 0 {!mix} else {mix}; unsafe { let x = *self.mem.get_unchecked(base + mr_offset); a = mix + *self.mem.get_unchecked(base + m2_offset); let y = ind!(x) + a + b; *self.mem.get_unchecked_mut(base + mr_offset) = y; b = ind!(y >> RAND_SIZE_64_LEN) + x; *self.rsl.get_unchecked_mut(base + mr_offset) = b; } }} } rngstepp!(0, 21); rngstepn!(1, 5); rngstepp!(2, 12); rngstepn!(3, 33); } } self.a = a; self.b = b; self.cnt = RAND_SIZE_64; } } // Cannot be derived because [u32; 256] does not implement Clone impl Clone for Isaac64Rng { fn clone(&self) -> Isaac64Rng { *self } } impl Rng for Isaac64Rng { // FIXME #7771: having next_u32 like this should be unnecessary #[inline] fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } #[inline] fn next_u64(&mut self) -> u64 { if self.cnt == 0 { // make some more numbers self.isaac64(); } self.cnt -= 1; // See corresponding location in IsaacRng.next_u32 for // explanation. debug_assert!(self.cnt < RAND_SIZE_64); self.rsl[(self.cnt % RAND_SIZE_64) as usize].0 } } impl<'a> SeedableRng<&'a [u64]> for Isaac64Rng { fn reseed(&mut self, seed: &'a [u64]) { // make the seed into [seed[0], seed[1], ..., seed[seed.len() // - 1], 0, 0, ...], to fill rng.rsl. let seed_iter = seed.iter().cloned().chain(repeat(0)); for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) { *rsl_elem = w(seed_elem); } self.cnt = 0; self.a = w(0); self.b = w(0); self.c = w(0); self.init(true); } /// Create an ISAAC random number generator with a seed. This can /// be any length, although the maximum number of elements used is /// 256 and any more will be silently ignored. A generator /// constructed with a given seed will generate the same sequence /// of values as all other generators constructed with that seed. fn from_seed(seed: &'a [u64]) -> Isaac64Rng { let mut rng = EMPTY_64; rng.reseed(seed); rng } } impl Rand for Isaac64Rng { fn rand(other: &mut R) -> Isaac64Rng { let mut ret = EMPTY_64; unsafe { let ptr = ret.rsl.as_mut_ptr() as *mut u8; let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE_64 * 8); other.fill_bytes(slice); } ret.cnt = 0; ret.a = w(0); ret.b = w(0); ret.c = w(0); ret.init(true); return ret; } } #[cfg(test)] mod tests { use std::prelude::v1::*; use {Rng, SeedableRng}; use super::{IsaacRng, Isaac64Rng}; #[test] fn test_rng_32_rand_seeded() { let s = ::test::rng().gen_iter::().take(256).collect::>(); let mut ra: IsaacRng = SeedableRng::from_seed(&s[..]); let mut rb: IsaacRng = SeedableRng::from_seed(&s[..]); assert!(ra.gen_ascii_chars().take(100) .eq(rb.gen_ascii_chars().take(100))); } #[test] fn test_rng_64_rand_seeded() { let s = ::test::rng().gen_iter::().take(256).collect::>(); let mut ra: Isaac64Rng = SeedableRng::from_seed(&s[..]); let mut rb: Isaac64Rng = SeedableRng::from_seed(&s[..]); assert!(ra.gen_ascii_chars().take(100) .eq(rb.gen_ascii_chars().take(100))); } #[test] fn test_rng_32_seeded() { let seed: &[_] = &[1, 23, 456, 7890, 12345]; let mut ra: IsaacRng = SeedableRng::from_seed(seed); let mut rb: IsaacRng = SeedableRng::from_seed(seed); assert!(ra.gen_ascii_chars().take(100) .eq(rb.gen_ascii_chars().take(100))); } #[test] fn test_rng_64_seeded() { let seed: &[_] = &[1, 23, 456, 7890, 12345]; let mut ra: Isaac64Rng = SeedableRng::from_seed(seed); let mut rb: Isaac64Rng = SeedableRng::from_seed(seed); assert!(ra.gen_ascii_chars().take(100) .eq(rb.gen_ascii_chars().take(100))); } #[test] fn test_rng_32_reseed() { let s = ::test::rng().gen_iter::().take(256).collect::>(); let mut r: IsaacRng = SeedableRng::from_seed(&s[..]); let string1: String = r.gen_ascii_chars().take(100).collect(); r.reseed(&s); let string2: String = r.gen_ascii_chars().take(100).collect(); assert_eq!(string1, string2); } #[test] fn test_rng_64_reseed() { let s = ::test::rng().gen_iter::().take(256).collect::>(); let mut r: Isaac64Rng = SeedableRng::from_seed(&s[..]); let string1: String = r.gen_ascii_chars().take(100).collect(); r.reseed(&s); let string2: String = r.gen_ascii_chars().take(100).collect(); assert_eq!(string1, string2); } #[test] #[rustfmt_skip] fn test_rng_32_true_values() { let seed: &[_] = &[1, 23, 456, 7890, 12345]; let mut ra: IsaacRng = SeedableRng::from_seed(seed); // Regression test that isaac is actually using the above vector let v = (0..10).map(|_| ra.next_u32()).collect::>(); assert_eq!(v, vec!(2558573138, 873787463, 263499565, 2103644246, 3595684709, 4203127393, 264982119, 2765226902, 2737944514, 3900253796)); let seed: &[_] = &[12345, 67890, 54321, 9876]; let mut rb: IsaacRng = SeedableRng::from_seed(seed); // skip forward to the 10000th number for _ in 0..10000 { rb.next_u32(); } let v = (0..10).map(|_| rb.next_u32()).collect::>(); assert_eq!(v, vec!(3676831399, 3183332890, 2834741178, 3854698763, 2717568474, 1576568959, 3507990155, 179069555, 141456972, 2478885421)); } #[test] #[rustfmt_skip] fn test_rng_64_true_values() { let seed: &[_] = &[1, 23, 456, 7890, 12345]; let mut ra: Isaac64Rng = SeedableRng::from_seed(seed); // Regression test that isaac is actually using the above vector let v = (0..10).map(|_| ra.next_u64()).collect::>(); assert_eq!(v, vec!(547121783600835980, 14377643087320773276, 17351601304698403469, 1238879483818134882, 11952566807690396487, 13970131091560099343, 4469761996653280935, 15552757044682284409, 6860251611068737823, 13722198873481261842)); let seed: &[_] = &[12345, 67890, 54321, 9876]; let mut rb: Isaac64Rng = SeedableRng::from_seed(seed); // skip forward to the 10000th number for _ in 0..10000 { rb.next_u64(); } let v = (0..10).map(|_| rb.next_u64()).collect::>(); assert_eq!(v, vec!(18143823860592706164, 8491801882678285927, 2699425367717515619, 17196852593171130876, 2606123525235546165, 15790932315217671084, 596345674630742204, 9947027391921273664, 11788097613744130851, 10391409374914919106)); } #[test] fn test_rng_clone() { let seed: &[_] = &[1, 23, 456, 7890, 12345]; let mut rng: Isaac64Rng = SeedableRng::from_seed(seed); let mut clone = rng.clone(); for _ in 0..16 { assert_eq!(rng.next_u64(), clone.next_u64()); } } }