use rustc::middle::const_eval; use rustc::middle::ty::{self, TyCtxt}; use rustc::mir::mir_map::MirMap; use rustc::mir::repr as mir; use std::error::Error; use std::fmt; use memory::{FieldRepr, Memory, Pointer, Repr}; use primval::{self, PrimVal}; const TRACE_EXECUTION: bool = true; #[derive(Clone, Debug)] pub enum EvalError { DanglingPointerDeref, InvalidBool, PointerOutOfBounds, } pub type EvalResult = Result; impl Error for EvalError { fn description(&self) -> &str { match *self { EvalError::DanglingPointerDeref => "dangling pointer was dereferenced", EvalError::InvalidBool => "invalid boolean value read", EvalError::PointerOutOfBounds => "pointer offset outside bounds of allocation", } } fn cause(&self) -> Option<&Error> { None } } impl fmt::Display for EvalError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } /// A stack frame. struct Frame<'a, 'tcx: 'a> { /// The MIR for the fucntion called on this frame. mir: &'a mir::Mir<'tcx>, /// A pointer for writing the return value of the current call, if it's not a diverging call. return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. locals: Vec, /// The offset of the first variable in `self.locals`. var_offset: usize, /// The offset of the first temporary in `self.locals`. temp_offset: usize, } impl<'a, 'tcx: 'a> Frame<'a, 'tcx> { fn arg_ptr(&self, i: u32) -> Pointer { self.locals[i as usize] } fn var_ptr(&self, i: u32) -> Pointer { self.locals[self.var_offset + i as usize] } fn temp_ptr(&self, i: u32) -> Pointer { self.locals[self.temp_offset + i as usize] } } struct Interpreter<'a, 'tcx: 'a> { tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>, memory: Memory, stack: Vec>, } impl<'a, 'tcx: 'a> Interpreter<'a, 'tcx> { fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self { Interpreter { tcx: tcx, mir_map: mir_map, memory: Memory::new(), stack: Vec::new(), } } fn push_stack_frame(&mut self, mir: &'a mir::Mir<'tcx>, args: &[&mir::Operand<'tcx>], return_ptr: Option) -> EvalResult<()> { let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); let num_temps = mir.temp_decls.len(); assert_eq!(args.len(), num_args); let mut locals = Vec::with_capacity(num_args + num_vars + num_temps); for (arg_decl, arg_operand) in mir.arg_decls.iter().zip(args) { let repr = self.ty_to_repr(arg_decl.ty); let dest = self.memory.allocate(repr.size()); let (src, _) = try!(self.eval_operand(arg_operand)); try!(self.memory.copy(src, dest, repr.size())); locals.push(dest); } let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); locals.extend(var_tys.chain(temp_tys).map(|ty| { let repr = self.ty_to_repr(ty).size(); self.memory.allocate(repr) })); self.stack.push(Frame { mir: mir, return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, }); Ok(()) } fn pop_stack_frame(&mut self) { let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(tsion): Deallocate local variables. } fn call(&mut self, mir: &'a mir::Mir<'tcx>, args: &[&mir::Operand<'tcx>], return_ptr: Option) -> EvalResult<()> { try!(self.push_stack_frame(mir, args, return_ptr)); let mut current_block = mir::START_BLOCK; loop { if TRACE_EXECUTION { println!("Entering block: {:?}", current_block); } let block_data = mir.basic_block_data(current_block); for stmt in &block_data.statements { if TRACE_EXECUTION { println!("{:?}", stmt); } let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind; try!(self.eval_assignment(lvalue, rvalue)); } if TRACE_EXECUTION { println!("{:?}", block_data.terminator()); } use rustc::mir::repr::Terminator::*; match *block_data.terminator() { Return => break, Goto { target } => current_block = target, If { ref cond, targets: (then_target, else_target) } => { let (cond_ptr, _) = try!(self.eval_operand(cond)); let cond_val = try!(self.memory.read_bool(cond_ptr)); current_block = if cond_val { then_target } else { else_target }; } SwitchInt { ref discr, ref values, ref targets, .. } => { let (discr_ptr, discr_repr) = try!(self.eval_lvalue(discr)); let discr_val = try!(self.memory.read_primval(discr_ptr, &discr_repr)); // Branch to the `otherwise` case by default, if no match is found. current_block = targets[targets.len() - 1]; for (index, val_const) in values.iter().enumerate() { let ptr = try!(self.const_to_ptr(val_const)); let val = try!(self.memory.read_primval(ptr, &discr_repr)); if discr_val == val { current_block = targets[index]; break; } } } // Call { ref func, ref args, ref destination, .. } => { // use rustc::middle::cstore::CrateStore; // let ptr = destination.as_ref().map(|&(ref lv, _)| self.lvalue_to_ptr(lv)); // let func_val = self.operand_to_ptr(func); // if let Value::Func(def_id) = func_val { // let mir_data; // let mir = match self.tcx.map.as_local_node_id(def_id) { // Some(node_id) => self.mir_map.map.get(&node_id).unwrap(), // None => { // let cstore = &self.tcx.sess.cstore; // mir_data = cstore.maybe_get_item_mir(self.tcx, def_id).unwrap(); // &mir_data // } // }; // let arg_vals: Vec = // args.iter().map(|arg| self.operand_to_ptr(arg)).collect(); // self.call(mir, &arg_vals, ptr); // if let Some((_, target)) = *destination { // current_block = target; // } // } else { // panic!("tried to call a non-function value: {:?}", func_val); // } // } // Switch { ref discr, ref targets, .. } => { // let discr_val = self.read_lvalue(discr); // if let Value::Adt { variant, .. } = discr_val { // current_block = targets[variant]; // } else { // panic!("Switch on non-Adt value: {:?}", discr_val); // } // } Drop { target, .. } => { // TODO: Handle destructors and dynamic drop. current_block = target; } Resume => unimplemented!(), _ => unimplemented!(), } } self.pop_stack_frame(); Ok(()) } fn assign_to_product(&mut self, dest: Pointer, dest_repr: &Repr, operands: &[mir::Operand<'tcx>]) -> EvalResult<()> { match *dest_repr { Repr::Product { ref fields, .. } => { for (field, operand) in fields.iter().zip(operands) { let (src, _) = try!(self.eval_operand(operand)); try!(self.memory.copy(src, dest.offset(field.offset), field.repr.size())); } } _ => panic!("expected Repr::Product target"), } Ok(()) } fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> EvalResult<()> { let (dest, dest_repr) = try!(self.eval_lvalue(lvalue)); use rustc::mir::repr::Rvalue::*; match *rvalue { Use(ref operand) => { let (src, _) = try!(self.eval_operand(operand)); self.memory.copy(src, dest, dest_repr.size()) } BinaryOp(bin_op, ref left, ref right) => { let (left_ptr, left_repr) = try!(self.eval_operand(left)); let (right_ptr, right_repr) = try!(self.eval_operand(right)); let left_val = try!(self.memory.read_primval(left_ptr, &left_repr)); let right_val = try!(self.memory.read_primval(right_ptr, &right_repr)); self.memory.write_primval(dest, primval::binary_op(bin_op, left_val, right_val)) } UnaryOp(un_op, ref operand) => { let (ptr, repr) = try!(self.eval_operand(operand)); let val = try!(self.memory.read_primval(ptr, &repr)); self.memory.write_primval(dest, primval::unary_op(un_op, val)) } Aggregate(ref kind, ref operands) => { use rustc::mir::repr::AggregateKind::*; match *kind { Tuple => self.assign_to_product(dest, &dest_repr, operands), Adt(ref adt_def, variant_idx, _) => match adt_def.adt_kind() { ty::AdtKind::Struct => self.assign_to_product(dest, &dest_repr, operands), ty::AdtKind::Enum => match dest_repr { Repr::Sum { ref discr, ref variants, .. } => { if discr.size() > 0 { let discr_val = PrimVal::from_int(variant_idx as i64, discr); try!(self.memory.write_primval(dest, discr_val)); } self.assign_to_product( dest.offset(discr.size()), &variants[variant_idx], operands ) } _ => panic!("expected Repr::Sum target"), } }, Vec => unimplemented!(), Closure(..) => unimplemented!(), } } // Ref(_region, _kind, ref lvalue) => { // Value::Pointer(self.lvalue_to_ptr(lvalue)) // } ref r => panic!("can't handle rvalue: {:?}", r), } } fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<(Pointer, Repr)> { use rustc::mir::repr::Operand::*; match *op { Consume(ref lvalue) => self.eval_lvalue(lvalue), Constant(mir::Constant { ref literal, ty, .. }) => { use rustc::mir::repr::Literal::*; match *literal { Value { ref value } => Ok(( try!(self.const_to_ptr(value)), self.ty_to_repr(ty), )), ref l => panic!("can't handle item literal: {:?}", l), } } } } fn eval_lvalue(&self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult<(Pointer, Repr)> { let frame = self.current_frame(); use rustc::mir::repr::Lvalue::*; let ptr = match *lvalue { ReturnPointer => frame.return_ptr.expect("ReturnPointer used in a function with no return value"), Arg(i) => frame.arg_ptr(i), Var(i) => frame.var_ptr(i), Temp(i) => frame.temp_ptr(i), ref l => panic!("can't handle lvalue: {:?}", l), }; let ty = self.current_frame().mir.lvalue_ty(self.tcx, lvalue).to_ty(self.tcx); Ok((ptr, self.ty_to_repr(ty))) // mir::Lvalue::Projection(ref proj) => { // let base_ptr = self.lvalue_to_ptr(&proj.base); // match proj.elem { // mir::ProjectionElem::Field(field, _) => { // base_ptr.offset(field.index()) // } // mir::ProjectionElem::Downcast(_, variant) => { // let adt_val = self.read_pointer(base_ptr); // if let Value::Adt { variant: actual_variant, data_ptr } = adt_val { // debug_assert_eq!(variant, actual_variant); // data_ptr // } else { // panic!("Downcast attempted on non-ADT: {:?}", adt_val) // } // } // mir::ProjectionElem::Deref => { // let ptr_val = self.read_pointer(base_ptr); // if let Value::Pointer(ptr) = ptr_val { // ptr // } else { // panic!("Deref attempted on non-pointer: {:?}", ptr_val) // } // } // mir::ProjectionElem::Index(ref _operand) => unimplemented!(), // mir::ProjectionElem::ConstantIndex { .. } => unimplemented!(), // } // } // _ => unimplemented!(), // } } fn const_to_ptr(&mut self, const_val: &const_eval::ConstVal) -> EvalResult { use rustc::middle::const_eval::ConstVal::*; match *const_val { Float(_f) => unimplemented!(), Int(n) => { // TODO(tsion): Check int constant type. let ptr = self.memory.allocate(8); try!(self.memory.write_i64(ptr, n)); Ok(ptr) } Uint(_u) => unimplemented!(), Str(ref _s) => unimplemented!(), ByteStr(ref _bs) => unimplemented!(), Bool(b) => { let ptr = self.memory.allocate(Repr::Bool.size()); try!(self.memory.write_bool(ptr, b)); Ok(ptr) }, Struct(_node_id) => unimplemented!(), Tuple(_node_id) => unimplemented!(), Function(_def_id) => unimplemented!(), Array(_, _) => unimplemented!(), Repeat(_, _) => unimplemented!(), } } fn make_product_repr(&self, iter: I) -> Repr where I: IntoIterator> { let mut size = 0; let fields = iter.into_iter().map(|ty| { let repr = self.ty_to_repr(ty); let old_size = size; size += repr.size(); FieldRepr { offset: old_size, repr: repr } }).collect(); Repr::Product { size: size, fields: fields } } // TODO(tsion): Cache these outputs. fn ty_to_repr(&self, ty: ty::Ty<'tcx>) -> Repr { use syntax::ast::IntTy; match ty.sty { ty::TyBool => Repr::Bool, ty::TyInt(IntTy::Is) => unimplemented!(), ty::TyInt(IntTy::I8) => Repr::I8, ty::TyInt(IntTy::I16) => Repr::I16, ty::TyInt(IntTy::I32) => Repr::I32, ty::TyInt(IntTy::I64) => Repr::I64, ty::TyTuple(ref fields) => self.make_product_repr(fields.iter().cloned()), ty::TyEnum(adt_def, ref subst) => { let num_variants = adt_def.variants.len(); let discr = if num_variants <= 1 { Repr::Product { size: 0, fields: vec![] } } else if num_variants <= 1 << 8 { Repr::I8 } else if num_variants <= 1 << 16 { Repr::I16 } else if num_variants <= 1 << 32 { Repr::I32 } else { Repr::I64 }; let variants: Vec = adt_def.variants.iter().map(|v| { let field_tys = v.fields.iter().map(|f| f.ty(self.tcx, subst)); self.make_product_repr(field_tys) }).collect(); Repr::Sum { discr: Box::new(discr), max_variant_size: variants.iter().map(Repr::size).max().unwrap_or(0), variants: variants, } } ty::TyStruct(adt_def, ref subst) => { assert_eq!(adt_def.variants.len(), 1); let field_tys = adt_def.variants[0].fields.iter().map(|f| f.ty(self.tcx, subst)); self.make_product_repr(field_tys) } ref t => panic!("can't convert type to repr: {:?}", t), } } fn current_frame(&self) -> &Frame<'a, 'tcx> { self.stack.last().expect("no call frames exist") } } pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) { for (&id, mir) in &mir_map.map { for attr in tcx.map.attrs(id) { use syntax::attr::AttrMetaMethods; if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let mut miri = Interpreter::new(tcx, mir_map); let return_ptr = match mir.return_ty { ty::FnConverging(ty) => { let repr = miri.ty_to_repr(ty).size(); Some(miri.memory.allocate(repr)) } ty::FnDiverging => None, }; miri.call(mir, &[], return_ptr).unwrap(); if let Some(ret) = return_ptr { println!("Returned: {:?}\n", miri.memory.get(ret.alloc_id).unwrap()); } } } } }