// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use cast; use cell::Cell; use comm; use ptr; use option::{Option,Some,None}; use task; use unstable::atomics::{AtomicOption,AtomicUint,Acquire,Release,Relaxed,SeqCst}; use unstable::finally::Finally; use unstable::mutex::Mutex; use ops::Drop; use clone::Clone; use kinds::Send; use vec; /// An atomically reference counted pointer. /// /// Enforces no shared-memory safety. //#[unsafe_no_drop_flag] FIXME: #9758 pub struct UnsafeArc { data: *mut ArcData, } pub enum UnsafeArcUnwrap { UnsafeArcSelf(UnsafeArc), UnsafeArcT(T) } impl UnsafeArcUnwrap { fn expect_t(self, msg: &'static str) -> T { match self { UnsafeArcSelf(_) => fail!(msg), UnsafeArcT(t) => t } } fn is_self(&self) -> bool { match *self { UnsafeArcSelf(_) => true, UnsafeArcT(_) => false } } } struct ArcData { count: AtomicUint, // An unwrapper uses this protocol to communicate with the "other" task that // drops the last refcount on an arc. Unfortunately this can't be a proper // pipe protocol because the unwrapper has to access both stages at once. // FIXME(#7544): Maybe use AtomicPtr instead (to avoid xchg in take() later)? unwrapper: AtomicOption<(comm::ChanOne<()>, comm::PortOne)>, // FIXME(#3224) should be able to make this non-option to save memory data: Option, } unsafe fn new_inner(data: T, refcount: uint) -> *mut ArcData { let data = ~ArcData { count: AtomicUint::new(refcount), unwrapper: AtomicOption::empty(), data: Some(data) }; cast::transmute(data) } impl UnsafeArc { pub fn new(data: T) -> UnsafeArc { unsafe { UnsafeArc { data: new_inner(data, 1) } } } /// As new(), but returns an extra pre-cloned handle. pub fn new2(data: T) -> (UnsafeArc, UnsafeArc) { unsafe { let ptr = new_inner(data, 2); (UnsafeArc { data: ptr }, UnsafeArc { data: ptr }) } } /// As new(), but returns a vector of as many pre-cloned handles as requested. pub fn newN(data: T, num_handles: uint) -> ~[UnsafeArc] { unsafe { if num_handles == 0 { ~[] // need to free data here } else { let ptr = new_inner(data, num_handles); vec::from_fn(num_handles, |_| UnsafeArc { data: ptr }) } } } /// As newN(), but from an already-existing handle. Uses one xadd. pub fn cloneN(self, num_handles: uint) -> ~[UnsafeArc] { if num_handles == 0 { ~[] // The "num_handles - 1" trick (below) fails in the 0 case. } else { unsafe { // Minus one because we are recycling the given handle's refcount. let old_count = (*self.data).count.fetch_add(num_handles - 1, Acquire); // let old_count = (*self.data).count.fetch_add(num_handles, Acquire); assert!(old_count >= 1); let ptr = self.data; cast::forget(self); // Don't run the destructor on this handle. vec::from_fn(num_handles, |_| UnsafeArc { data: ptr }) } } } #[inline] pub fn get(&self) -> *mut T { unsafe { assert!((*self.data).count.load(Relaxed) > 0); let r: *mut T = (*self.data).data.get_mut_ref(); return r; } } #[inline] pub fn get_immut(&self) -> *T { unsafe { assert!((*self.data).count.load(Relaxed) > 0); let r: *T = (*self.data).data.get_ref(); return r; } } /// Wait until all other handles are dropped, then retrieve the enclosed /// data. See extra::arc::Arc for specific semantics documentation. /// If called when the task is already unkillable, unwrap will unkillably /// block; otherwise, an unwrapping task can be killed by linked failure. pub fn unwrap(self) -> T { unsafe { let mut this = self; // The ~ dtor needs to run if this code succeeds. let mut data: ~ArcData = cast::transmute(this.data); // Set up the unwrap protocol. let (p1,c1) = comm::oneshot(); // () let (p2,c2) = comm::oneshot(); // bool // Try to put our server end in the unwrapper slot. // This needs no barrier -- it's protected by the release barrier on // the xadd, and the acquire+release barrier in the destructor's xadd. if data.unwrapper.fill(~(c1,p2), Relaxed).is_none() { // Got in. Tell this handle's destructor not to run (we are now it). this.data = ptr::mut_null(); // Drop our own reference. let old_count = data.count.fetch_sub(1, Release); assert!(old_count >= 1); if old_count == 1 { // We were the last owner. Can unwrap immediately. // AtomicOption's destructor will free the server endpoint. // FIXME(#3224): it should be like this // let ~ArcData { data: user_data, _ } = data; // user_data data.data.take_unwrap() } else { // The *next* person who sees the refcount hit 0 will wake us. let p1 = Cell::new(p1); // argh // Unlike the above one, this cell is necessary. It will get // taken either in the do block or in the finally block. let c2_and_data = Cell::new((c2,data)); (|| { p1.take().recv(); // Got here. Back in the 'unkillable' without getting killed. let (c2, data) = c2_and_data.take(); c2.send(true); // FIXME(#3224): it should be like this // let ~ArcData { data: user_data, _ } = data; // user_data let mut data = data; data.data.take_unwrap() }).finally(|| { if task::failing() { // Killed during wait. Because this might happen while // someone else still holds a reference, we can't free // the data now; the "other" last refcount will free it. let (c2, data) = c2_and_data.take(); c2.send(false); cast::forget(data); } else { assert!(c2_and_data.is_empty()); } }) } } else { // If 'put' returns the server end back to us, we were rejected; // someone else was trying to unwrap. Avoid guaranteed deadlock. cast::forget(data); fail!("Another task is already unwrapping this Arc!"); } } } /// As unwrap above, but without blocking. Returns 'UnsafeArcSelf(self)' if this is /// not the last reference; 'UnsafeArcT(unwrapped_data)' if so. pub fn try_unwrap(mut self) -> UnsafeArcUnwrap { unsafe { // The ~ dtor needs to run if this code succeeds. let mut data: ~ArcData = cast::transmute(self.data); // This can of course race with anybody else who has a handle, but in // such a case, the returned count will always be at least 2. If we // see 1, no race was possible. All that matters is 1 or not-1. let count = data.count.load(Acquire); assert!(count >= 1); // The more interesting race is one with an unwrapper. They may have // already dropped their count -- but if so, the unwrapper pointer // will have been set first, which the barriers ensure we will see. // (Note: using is_empty(), not take(), to not free the unwrapper.) if count == 1 && data.unwrapper.is_empty(Acquire) { // Tell this handle's destructor not to run (we are now it). self.data = ptr::mut_null(); // FIXME(#3224) as above UnsafeArcT(data.data.take_unwrap()) } else { cast::forget(data); UnsafeArcSelf(self) } } } } impl Clone for UnsafeArc { fn clone(&self) -> UnsafeArc { unsafe { // This barrier might be unnecessary, but I'm not sure... let old_count = (*self.data).count.fetch_add(1, Acquire); assert!(old_count >= 1); return UnsafeArc { data: self.data }; } } } #[unsafe_destructor] impl Drop for UnsafeArc{ fn drop(&mut self) { unsafe { // Happens when destructing an unwrapper's handle and from `#[unsafe_no_drop_flag]` if self.data.is_null() { return } let mut data: ~ArcData = cast::transmute(self.data); // Must be acquire+release, not just release, to make sure this // doesn't get reordered to after the unwrapper pointer load. let old_count = data.count.fetch_sub(1, SeqCst); assert!(old_count >= 1); if old_count == 1 { // Were we really last, or should we hand off to an // unwrapper? It's safe to not xchg because the unwrapper // will set the unwrap lock *before* dropping his/her // reference. In effect, being here means we're the only // *awake* task with the data. match data.unwrapper.take(Acquire) { Some(~(message,response)) => { // Send 'ready' and wait for a response. message.send(()); // Unkillable wait. Message guaranteed to come. if response.recv() { // Other task got the data. cast::forget(data); } else { // Other task was killed. drop glue takes over. } } None => { // drop glue takes over. } } } else { cast::forget(data); } } } } /****************************************************************************/ /** * Enables a runtime assertion that no operation in the argument closure shall * use scheduler operations (deschedule, recv, spawn, etc). This is for use with * pthread mutexes, which may block the entire scheduler thread, rather than * just one task, and is hence prone to deadlocks if mixed with descheduling. * * NOTE: THIS DOES NOT PROVIDE LOCKING, or any sort of critical-section * synchronization whatsoever. It only makes sense to use for CPU-local issues. */ // FIXME(#8140) should not be pub pub unsafe fn atomically(f: || -> U) -> U { use rt::task::{Task, GreenTask, SchedTask}; use rt::local::Local; let task_opt: Option<*mut Task> = Local::try_unsafe_borrow(); match task_opt { Some(t) => { match (*t).task_type { GreenTask(_) => { (|| { (*t).death.inhibit_deschedule(); f() }).finally(|| (*t).death.allow_deschedule()) } SchedTask => f() } } None => f() } } pub struct LittleLock { priv l: Mutex, } pub struct LittleGuard<'a> { priv l: &'a mut Mutex, } impl Drop for LittleLock { fn drop(&mut self) { unsafe { self.l.destroy(); } } } #[unsafe_destructor] impl<'a> Drop for LittleGuard<'a> { fn drop(&mut self) { unsafe { self.l.unlock(); } } } impl LittleLock { pub fn new() -> LittleLock { unsafe { LittleLock { l: Mutex::new() } } } pub unsafe fn lock<'a>(&'a mut self) -> LittleGuard<'a> { self.l.lock(); LittleGuard { l: &mut self.l } } pub unsafe fn try_lock<'a>(&'a mut self) -> Option> { if self.l.trylock() { Some(LittleGuard { l: &mut self.l }) } else { None } } pub unsafe fn signal(&mut self) { self.l.signal(); } } impl<'a> LittleGuard<'a> { pub unsafe fn wait(&mut self) { self.l.wait(); } } struct ExData { lock: LittleLock, failed: bool, data: T, } /** * An arc over mutable data that is protected by a lock. For library use only. * * # Safety note * * This uses a pthread mutex, not one that's aware of the userspace scheduler. * The user of an Exclusive must be careful not to invoke any functions that may * reschedule the task while holding the lock, or deadlock may result. If you * need to block or deschedule while accessing shared state, use extra::sync::RWArc. */ pub struct Exclusive { priv x: UnsafeArc> } impl Clone for Exclusive { // Duplicate an Exclusive Arc, as std::arc::clone. fn clone(&self) -> Exclusive { Exclusive { x: self.x.clone() } } } impl Exclusive { pub fn new(user_data: T) -> Exclusive { let data = ExData { lock: LittleLock::new(), failed: false, data: user_data }; Exclusive { x: UnsafeArc::new(data) } } // Exactly like std::arc::MutexArc,access(), but with the LittleLock // instead of a proper mutex. Same reason for being unsafe. // // Currently, scheduling operations (i.e., descheduling, receiving on a pipe, // accessing the provided condition variable) are prohibited while inside // the Exclusive. Supporting that is a work in progress. #[inline] pub unsafe fn with(&self, f: |x: &mut T| -> U) -> U { let rec = self.x.get(); let _l = (*rec).lock.lock(); if (*rec).failed { fail!("Poisoned Exclusive::new - another task failed inside!"); } (*rec).failed = true; let result = f(&mut (*rec).data); (*rec).failed = false; result } #[inline] pub unsafe fn with_imm(&self, f: |x: &T| -> U) -> U { self.with(|x| f(cast::transmute_immut(x))) } #[inline] pub unsafe fn hold_and_signal(&self, f: |x: &mut T|) { let rec = self.x.get(); let _l = (*rec).lock.lock(); if (*rec).failed { fail!("Poisoned Exclusive::new - another task failed inside!"); } (*rec).failed = true; f(&mut (*rec).data); (*rec).failed = false; (*rec).lock.signal(); } #[inline] pub unsafe fn hold_and_wait(&self, f: |x: &T| -> bool) { let rec = self.x.get(); let mut l = (*rec).lock.lock(); if (*rec).failed { fail!("Poisoned Exclusive::new - another task failed inside!"); } (*rec).failed = true; let result = f(&(*rec).data); (*rec).failed = false; if result { l.wait(); } } pub fn unwrap(self) -> T { let Exclusive { x: x } = self; // Someday we might need to unkillably unwrap an Exclusive, but not today. let inner = x.unwrap(); let ExData { data: user_data, .. } = inner; // will destroy the LittleLock user_data } } #[cfg(test)] mod tests { use comm; use option::*; use prelude::*; use super::{Exclusive, UnsafeArc, atomically}; use task; use util; use mem::size_of; //#[unsafe_no_drop_flag] FIXME: #9758 #[ignore] #[test] fn test_size() { assert_eq!(size_of::>(), size_of::<*[int, ..10]>()); } #[test] fn test_atomically() { // NB. The whole runtime will abort on an 'atomic-sleep' violation, // so we can't really test for the converse behaviour. unsafe { atomically(|| ()) } task::deschedule(); // oughtn't fail } #[test] fn exclusive_new_arc() { unsafe { let mut futures = ~[]; let num_tasks = 10; let count = 10; let total = Exclusive::new(~0); for _ in range(0u, num_tasks) { let total = total.clone(); let (port, chan) = comm::stream(); futures.push(port); do task::spawn || { for _ in range(0u, count) { total.with(|count| **count += 1); } chan.send(()); } }; for f in futures.iter() { f.recv() } total.with(|total| assert!(**total == num_tasks * count)); } } #[test] #[should_fail] fn exclusive_new_poison() { unsafe { // Tests that if one task fails inside of an Exclusive::new, subsequent // accesses will also fail. let x = Exclusive::new(1); let x2 = x.clone(); do task::try || { x2.with(|one| assert_eq!(*one, 2)) }; x.with(|one| assert_eq!(*one, 1)); } } #[test] fn arclike_newN() { // Tests that the many-refcounts-at-once constructors don't leak. let _ = UnsafeArc::new2(~~"hello"); let x = UnsafeArc::newN(~~"hello", 0); assert_eq!(x.len(), 0) let x = UnsafeArc::newN(~~"hello", 1); assert_eq!(x.len(), 1) let x = UnsafeArc::newN(~~"hello", 10); assert_eq!(x.len(), 10) } #[test] fn arclike_cloneN() { // Tests that the many-refcounts-at-once special-clone doesn't leak. let x = UnsafeArc::new(~~"hello"); let x = x.cloneN(0); assert_eq!(x.len(), 0); let x = UnsafeArc::new(~~"hello"); let x = x.cloneN(1); assert_eq!(x.len(), 1); let x = UnsafeArc::new(~~"hello"); let x = x.cloneN(10); assert_eq!(x.len(), 10); } #[test] fn arclike_unwrap_basic() { let x = UnsafeArc::new(~~"hello"); assert!(x.unwrap() == ~~"hello"); } #[test] fn arclike_try_unwrap() { let x = UnsafeArc::new(~~"hello"); assert!(x.try_unwrap().expect_t("try_unwrap failed") == ~~"hello"); } #[test] fn arclike_try_unwrap_fail() { let x = UnsafeArc::new(~~"hello"); let x2 = x.clone(); let left_x = x.try_unwrap(); assert!(left_x.is_self()); util::ignore(left_x); assert!(x2.try_unwrap().expect_t("try_unwrap none") == ~~"hello"); } #[test] fn arclike_try_unwrap_unwrap_race() { // When an unwrap and a try_unwrap race, the unwrapper should always win. let x = UnsafeArc::new(~~"hello"); let x2 = x.clone(); let (p,c) = comm::stream(); do task::spawn { c.send(()); assert!(x2.unwrap() == ~~"hello"); c.send(()); } p.recv(); task::deschedule(); // Try to make the unwrapper get blocked first. let left_x = x.try_unwrap(); assert!(left_x.is_self()); util::ignore(left_x); p.recv(); } #[test] fn exclusive_new_unwrap_basic() { // Unlike the above, also tests no double-freeing of the LittleLock. let x = Exclusive::new(~~"hello"); assert!(x.unwrap() == ~~"hello"); } #[test] fn exclusive_new_unwrap_contended() { let x = Exclusive::new(~~"hello"); let x2 = x.clone(); do task::spawn { unsafe { x2.with(|_hello| ()); } task::deschedule(); } assert!(x.unwrap() == ~~"hello"); // Now try the same thing, but with the child task blocking. let x = Exclusive::new(~~"hello"); let x2 = x.clone(); let mut builder = task::task(); let res = builder.future_result(); do builder.spawn { assert!(x2.unwrap() == ~~"hello"); } // Have to get rid of our reference before blocking. util::ignore(x); res.recv(); } #[test] #[should_fail] fn exclusive_new_unwrap_conflict() { let x = Exclusive::new(~~"hello"); let x2 = x.clone(); let mut builder = task::task(); let res = builder.future_result(); do builder.spawn { assert!(x2.unwrap() == ~~"hello"); } assert!(x.unwrap() == ~~"hello"); assert!(res.recv().is_ok()); } }