import syntax::ast; import syntax::ast_util; import lib::llvm::llvm; import llvm::{ValueRef, TypeRef}; import trans_common::*; import trans_build::*; import trans::*; import middle::freevars::get_freevars; import option::{some, none}; import back::abi; import syntax::codemap::span; import back::link::{ mangle_internal_name_by_path, mangle_internal_name_by_path_and_seq}; import trans::{ trans_shared_malloc, type_of_inner, size_of, node_id_type, INIT, trans_shared_free, drop_ty, new_sub_block_ctxt, load_if_immediate, dest }; // ___Good to know (tm)__________________________________________________ // // The layout of a closure environment in memory is // roughly as follows: // // struct closure_box { // unsigned ref_count; // only used for sharid environments // struct closure { // type_desc *tydesc; // descriptor for the env type // type_desc *bound_tdescs[]; // bound descriptors // struct { // upvar1_t upvar1; // ... // upvarN_t upvarN; // } bound_data; // }; // }; // // NB: this is defined in the code in T_closure_ptr and // closure_ty_to_tuple_ty (below). // // Note that the closure carries a type descriptor that describes // itself. Trippy. This is needed because the precise types of the // closed over data are lost in the closure type (`fn(T)->U`), so if // we need to take/drop, we must know what data is in the upvars and // so forth. // // The allocation strategy for this closure depends on the closure // type. For a sendfn, the closure (and the referenced type // descriptors) will be allocated in the exchange heap. For a fn, the // closure is allocated in the task heap and is reference counted. // For a block, the closure is allocated on the stack. Note that in // all cases we allocate space for a ref count just to make our lives // easier when upcasting to block(T)->U, in the shape code, and so // forth. // // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tag environment_value { env_expr(@ast::expr); env_direct(ValueRef, ty::t, bool); } // Given a closure ty, emits a corresponding tuple ty fn mk_closure_ty(tcx: ty::ctxt, ck: ty::closure_kind, n_bound_tds: uint, bound_data_ty: ty::t) -> ty::t { let tydesc_ty = alt ck { ty::closure_block. | ty::closure_shared. { ty::mk_type(tcx) } ty::closure_send. { ty::mk_send_type(tcx) } }; ret ty::mk_tup(tcx, [ tydesc_ty, ty::mk_tup(tcx, vec::init_elt(tydesc_ty, n_bound_tds)), bound_data_ty]); } fn shared_opaque_closure_box_ty(tcx: ty::ctxt) -> ty::t { let opaque_closure_ty = ty::mk_opaque_closure(tcx); ret ty::mk_imm_box(tcx, opaque_closure_ty); } fn send_opaque_closure_box_ty(tcx: ty::ctxt) -> ty::t { let opaque_closure_ty = ty::mk_opaque_closure(tcx); let tup_ty = ty::mk_tup(tcx, [ty::mk_int(tcx), opaque_closure_ty]); ret ty::mk_uniq(tcx, {ty: tup_ty, mut: ast::imm}); } type closure_result = { llbox: ValueRef, // llvalue of boxed environment box_ty: ty::t, // type of boxed environment bcx: @block_ctxt // final bcx }; // Given a block context and a list of tydescs and values to bind // construct a closure out of them. If copying is true, it is a // heap allocated closure that copies the upvars into environment. // Otherwise, it is stack allocated and copies pointers to the upvars. fn store_environment( bcx: @block_ctxt, lltydescs: [ValueRef], bound_values: [environment_value], ck: ty::closure_kind) -> closure_result { fn dummy_environment_box(bcx: @block_ctxt, r: result) -> (@block_ctxt, ValueRef, ValueRef) { // Prevent glue from trying to free this. let ccx = bcx_ccx(bcx); let ref_cnt = GEPi(bcx, r.val, [0, abi::box_rc_field_refcnt]); Store(r.bcx, C_int(ccx, 2), ref_cnt); let closure = GEPi(r.bcx, r.val, [0, abi::box_rc_field_body]); (r.bcx, closure, r.val) } fn maybe_clone_tydesc(bcx: @block_ctxt, ck: ty::closure_kind, td: ValueRef) -> ValueRef { ret alt ck { ty::closure_block. | ty::closure_shared. { td } ty::closure_send. { Call(bcx, bcx_ccx(bcx).upcalls.create_shared_type_desc, [td]) } }; } //let ccx = bcx_ccx(bcx); let tcx = bcx_tcx(bcx); // First, synthesize a tuple type containing the types of all the // bound expressions. // bindings_ty = [bound_ty1, bound_ty2, ...] let bound_tys = []; for bv in bound_values { bound_tys += [alt bv { env_direct(_, t, _) { t } env_expr(e) { ty::expr_ty(tcx, e) } }]; } let bound_data_ty = ty::mk_tup(tcx, bound_tys); let closure_ty = mk_closure_ty(tcx, ck, vec::len(lltydescs), bound_data_ty); let temp_cleanups = []; // Allocate a box that can hold something closure-sized. // // For now, no matter what kind of closure we have, we always allocate // space for a ref cnt in the closure. If the closure is a block or // unique closure, this ref count isn't really used: we initialize it to 2 // so that it will never drop to zero. This is a hack and could go away // but then we'd have to modify the code to do the right thing when // casting from a shared closure to a block. let (bcx, closure, box) = alt ck { ty::closure_shared. { let r = trans::trans_malloc_boxed(bcx, closure_ty); add_clean_free(bcx, r.box, false); temp_cleanups += [r.box]; (r.bcx, r.body, r.box) } ty::closure_send. { // Dummy up a box in the exchange heap. let tup_ty = ty::mk_tup(tcx, [ty::mk_int(tcx), closure_ty]); let box_ty = ty::mk_uniq(tcx, {ty: tup_ty, mut: ast::imm}); check trans_uniq::type_is_unique_box(bcx, box_ty); let r = trans_uniq::alloc_uniq(bcx, box_ty); add_clean_free(bcx, r.val, true); dummy_environment_box(bcx, r) } ty::closure_block. { // Dummy up a box on the stack, let ty = ty::mk_tup(tcx, [ty::mk_int(tcx), closure_ty]); let r = trans::alloc_ty(bcx, ty); dummy_environment_box(bcx, r) } }; // Store bindings tydesc. alt ck { ty::closure_shared. | ty::closure_send. { let bound_tydesc = GEPi(bcx, closure, [0, abi::closure_elt_tydesc]); let ti = none; // NDM I believe this is the correct value, // but using it exposes bugs and limitations // in the shape code. Therefore, I am using // tps_normal, which is what we used before. // // let tps = tps_fn(vec::len(lltydescs)); let tps = tps_normal; let {result:closure_td, _} = trans::get_tydesc(bcx, closure_ty, true, tps, ti); trans::lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti); trans::lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti); bcx = closure_td.bcx; let td = maybe_clone_tydesc(bcx, ck, closure_td.val); Store(bcx, td, bound_tydesc); } ty::closure_block. { /* skip this for blocks, not really relevant */ } } check type_is_tup_like(bcx, closure_ty); let box_ty = ty::mk_imm_box(bcx_tcx(bcx), closure_ty); // If necessary, copy tydescs describing type parameters into the // appropriate slot in the closure. let {bcx:bcx, val:ty_params_slot} = GEP_tup_like_1(bcx, closure_ty, closure, [0, abi::closure_elt_ty_params]); vec::iter2(lltydescs) { |i, td| let ty_param_slot = GEPi(bcx, ty_params_slot, [0, i as int]); let cloned_td = maybe_clone_tydesc(bcx, ck, td); Store(bcx, cloned_td, ty_param_slot); } // Copy expr values into boxed bindings. // Silly check vec::iter2(bound_values) { |i, bv| let bound = trans::GEP_tup_like_1(bcx, box_ty, box, [0, abi::box_rc_field_body, abi::closure_elt_bindings, i as int]); bcx = bound.bcx; alt bv { env_expr(e) { bcx = trans::trans_expr_save_in(bcx, e, bound.val); add_clean_temp_mem(bcx, bound.val, bound_tys[i]); temp_cleanups += [bound.val]; } env_direct(val, ty, is_mem) { alt ck { ty::closure_shared. | ty::closure_send. { let val1 = is_mem ? load_if_immediate(bcx, val, ty) : val; bcx = trans::copy_val(bcx, INIT, bound.val, val1, ty); } ty::closure_block. { let addr = is_mem ? val : do_spill_noroot(bcx, val); Store(bcx, addr, bound.val); } } } } } for cleanup in temp_cleanups { revoke_clean(bcx, cleanup); } ret {llbox: box, box_ty: box_ty, bcx: bcx}; } // Given a context and a list of upvars, build a closure. This just // collects the upvars and packages them up for store_environment. fn build_closure(cx: @block_ctxt, upvars: @[ast::def], ck: ty::closure_kind) -> closure_result { // If we need to, package up the iterator body to call let env_vals = []; let tcx = bcx_tcx(cx); // Package up the upvars vec::iter(*upvars) { |def| let lv = trans_local_var(cx, def); let nid = ast_util::def_id_of_def(def).node; let ty = ty::node_id_to_monotype(tcx, nid); alt ck { ty::closure_block. { ty = ty::mk_mut_ptr(tcx, ty); } ty::closure_send. | ty::closure_shared. {} } env_vals += [env_direct(lv.val, ty, lv.kind == owned)]; } ret store_environment(cx, copy cx.fcx.lltydescs, env_vals, ck); } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. fn load_environment(enclosing_cx: @block_ctxt, fcx: @fn_ctxt, boxed_closure_ty: ty::t, upvars: @[ast::def], ck: ty::closure_kind) { let bcx = new_raw_block_ctxt(fcx, fcx.llloadenv); let ccx = bcx_ccx(bcx); let sp = bcx.sp; check (type_has_static_size(ccx, boxed_closure_ty)); let llty = type_of(ccx, sp, boxed_closure_ty); let llclosure = PointerCast(bcx, fcx.llenv, llty); // Populate the type parameters from the environment. We need to // do this first because the tydescs are needed to index into // the bindings if they are dynamically sized. let tydesc_count = vec::len(enclosing_cx.fcx.lltydescs); let lltydescs = GEPi(bcx, llclosure, [0, abi::box_rc_field_body, abi::closure_elt_ty_params]); uint::range(0u, tydesc_count) { |i| let lltydescptr = GEPi(bcx, lltydescs, [0, i as int]); fcx.lltydescs += [Load(bcx, lltydescptr)]; } // Populate the upvars from the environment. let path = [0, abi::box_rc_field_body, abi::closure_elt_bindings]; vec::iter2(*upvars) { |i, upvar_def| check type_is_tup_like(bcx, boxed_closure_ty); let upvarptr = GEP_tup_like(bcx, boxed_closure_ty, llclosure, path + [i as int]); bcx = upvarptr.bcx; let llupvarptr = upvarptr.val; alt ck { ty::closure_block. { llupvarptr = Load(bcx, llupvarptr); } ty::closure_send. | ty::closure_shared. { } } let def_id = ast_util::def_id_of_def(upvar_def); fcx.llupvars.insert(def_id.node, llupvarptr); } } fn trans_expr_fn(bcx: @block_ctxt, f: ast::_fn, sp: span, id: ast::node_id, dest: dest) -> @block_ctxt { if dest == ignore { ret bcx; } let ccx = bcx_ccx(bcx), bcx = bcx; let fty = node_id_type(ccx, id); check returns_non_ty_var(ccx, fty); let llfnty = type_of_fn_from_ty(ccx, sp, fty, 0u); let sub_cx = extend_path(bcx.fcx.lcx, ccx.names.next("anon")); let s = mangle_internal_name_by_path(ccx, sub_cx.path); let llfn = decl_internal_cdecl_fn(ccx.llmod, s, llfnty); let trans_closure_env = lambda(ck: ty::closure_kind) -> ValueRef { let upvars = get_freevars(ccx.tcx, id); let {llbox, box_ty, bcx} = build_closure(bcx, upvars, ck); trans_closure(sub_cx, sp, f, llfn, no_self, [], id, {|fcx| load_environment(bcx, fcx, box_ty, upvars, ck); }); llbox }; let closure = alt f.proto { ast::proto_block. { trans_closure_env(ty::closure_block) } ast::proto_shared(_) { trans_closure_env(ty::closure_shared) } ast::proto_send. { trans_closure_env(ty::closure_send) } ast::proto_bare. { let closure = C_null(T_opaque_boxed_closure_ptr(ccx)); trans_closure(sub_cx, sp, f, llfn, no_self, [], id, {|_fcx|}); closure } }; fill_fn_pair(bcx, get_dest_addr(dest), llfn, closure); ret bcx; } fn trans_bind(cx: @block_ctxt, f: @ast::expr, args: [option::t<@ast::expr>], id: ast::node_id, dest: dest) -> @block_ctxt { let f_res = trans_callee(cx, f); ret trans_bind_1(cx, ty::expr_ty(bcx_tcx(cx), f), f_res, args, ty::node_id_to_type(bcx_tcx(cx), id), dest); } fn trans_bind_1(cx: @block_ctxt, outgoing_fty: ty::t, f_res: lval_maybe_callee, args: [option::t<@ast::expr>], pair_ty: ty::t, dest: dest) -> @block_ctxt { let bound: [@ast::expr] = []; for argopt: option::t<@ast::expr> in args { alt argopt { none. { } some(e) { bound += [e]; } } } let bcx = f_res.bcx; if dest == ignore { for ex in bound { bcx = trans_expr(bcx, ex, ignore); } ret bcx; } // Figure out which tydescs we need to pass, if any. let outgoing_fty_real; // the type with typarams still in it let lltydescs: [ValueRef]; alt f_res.generic { none. { outgoing_fty_real = outgoing_fty; lltydescs = []; } some(ginfo) { lazily_emit_all_generic_info_tydesc_glues(cx, ginfo); outgoing_fty_real = ginfo.item_type; lltydescs = ginfo.tydescs; } } let ty_param_count = vec::len(lltydescs); if vec::len(bound) == 0u && ty_param_count == 0u { // Trivial 'binding': just return the closure let lv = lval_maybe_callee_to_lval(f_res, pair_ty); bcx = lv.bcx; ret memmove_ty(bcx, get_dest_addr(dest), lv.val, pair_ty); } let closure = alt f_res.env { null_env. { none } _ { let (_, cl) = maybe_add_env(cx, f_res); some(cl) } }; // FIXME: should follow from a precondition on trans_bind_1 let ccx = bcx_ccx(cx); check (type_has_static_size(ccx, outgoing_fty)); // Arrange for the bound function to live in the first binding spot // if the function is not statically known. let (env_vals, target_res) = alt closure { some(cl) { // Cast the function we are binding to be the type that the // closure will expect it to have. The type the closure knows // about has the type parameters substituted with the real types. let sp = cx.sp; let llclosurety = T_ptr(type_of(ccx, sp, outgoing_fty)); let src_loc = PointerCast(bcx, cl, llclosurety); ([env_direct(src_loc, pair_ty, true)], none) } none. { ([], some(f_res.val)) } }; // Actually construct the closure let {llbox, box_ty, bcx} = store_environment( bcx, lltydescs, env_vals + vec::map({|x| env_expr(x)}, bound), ty::closure_shared); // Make thunk let llthunk = trans_bind_thunk(cx.fcx.lcx, cx.sp, pair_ty, outgoing_fty_real, args, box_ty, ty_param_count, target_res); // Fill the function pair fill_fn_pair(bcx, get_dest_addr(dest), llthunk.val, llbox); ret bcx; } fn make_fn_glue( cx: @block_ctxt, v: ValueRef, t: ty::t, glue_fn: fn(@block_ctxt, v: ValueRef, t: ty::t) -> @block_ctxt) -> @block_ctxt { let bcx = cx; let tcx = bcx_tcx(cx); let fn_env = lambda(blk: block(@block_ctxt, ValueRef) -> @block_ctxt) -> @block_ctxt { let box_cell_v = GEPi(cx, v, [0, abi::fn_field_box]); let box_ptr_v = Load(cx, box_cell_v); let inner_cx = new_sub_block_ctxt(cx, "iter box"); let next_cx = new_sub_block_ctxt(cx, "next"); let null_test = IsNull(cx, box_ptr_v); CondBr(cx, null_test, next_cx.llbb, inner_cx.llbb); inner_cx = blk(inner_cx, box_cell_v); Br(inner_cx, next_cx.llbb); ret next_cx; }; ret alt ty::struct(tcx, t) { ty::ty_native_fn(_, _) | ty::ty_fn(ast::proto_bare., _, _, _, _) { bcx } ty::ty_fn(ast::proto_block., _, _, _, _) { bcx } ty::ty_fn(ast::proto_send., _, _, _, _) { fn_env({ |bcx, box_cell_v| let box_ty = trans_closure::send_opaque_closure_box_ty(tcx); glue_fn(bcx, box_cell_v, box_ty) }) } ty::ty_fn(ast::proto_shared(_), _, _, _, _) { fn_env({ |bcx, box_cell_v| let box_ty = trans_closure::shared_opaque_closure_box_ty(tcx); glue_fn(bcx, box_cell_v, box_ty) }) } _ { fail "make_fn_glue invoked on non-function type" } }; } fn call_opaque_closure_glue(bcx: @block_ctxt, v: ValueRef, // ptr to an opaque closure field: int) -> @block_ctxt { let ccx = bcx_ccx(bcx); let v = PointerCast(bcx, v, T_ptr(T_opaque_closure(ccx))); let tydescptr = GEPi(bcx, v, [0, abi::closure_elt_tydesc]); let tydesc = Load(bcx, tydescptr); let ti = none; call_tydesc_glue_full(bcx, v, tydesc, field, ti); ret bcx; } // pth is cx.path fn trans_bind_thunk(cx: @local_ctxt, sp: span, incoming_fty: ty::t, outgoing_fty: ty::t, args: [option::t<@ast::expr>], boxed_closure_ty: ty::t, ty_param_count: uint, target_fn: option::t) -> {val: ValueRef, ty: TypeRef} { // If we supported constraints on record fields, we could make the // constraints for this function: /* : returns_non_ty_var(ccx, outgoing_fty), type_has_static_size(ccx, incoming_fty) -> */ // but since we don't, we have to do the checks at the beginning. let ccx = cx.ccx; check type_has_static_size(ccx, incoming_fty); // Here we're not necessarily constructing a thunk in the sense of // "function with no arguments". The result of compiling 'bind f(foo, // bar, baz)' would be a thunk that, when called, applies f to those // arguments and returns the result. But we're stretching the meaning of // the word "thunk" here to also mean the result of compiling, say, 'bind // f(foo, _, baz)', or any other bind expression that binds f and leaves // some (or all) of the arguments unbound. // Here, 'incoming_fty' is the type of the entire bind expression, while // 'outgoing_fty' is the type of the function that is having some of its // arguments bound. If f is a function that takes three arguments of type // int and returns int, and we're translating, say, 'bind f(3, _, 5)', // then outgoing_fty is the type of f, which is (int, int, int) -> int, // and incoming_fty is the type of 'bind f(3, _, 5)', which is int -> int. // Once translated, the entire bind expression will be the call f(foo, // bar, baz) wrapped in a (so-called) thunk that takes 'bar' as its // argument and that has bindings of 'foo' to 3 and 'baz' to 5 and a // pointer to 'f' all saved in its environment. So, our job is to // construct and return that thunk. // Give the thunk a name, type, and value. let s: str = mangle_internal_name_by_path_and_seq(ccx, cx.path, "thunk"); let llthunk_ty: TypeRef = get_pair_fn_ty(type_of(ccx, sp, incoming_fty)); let llthunk: ValueRef = decl_internal_cdecl_fn(ccx.llmod, s, llthunk_ty); // Create a new function context and block context for the thunk, and hold // onto a pointer to the first block in the function for later use. let fcx = new_fn_ctxt(cx, sp, llthunk); let bcx = new_top_block_ctxt(fcx); let lltop = bcx.llbb; // Since we might need to construct derived tydescs that depend on // our bound tydescs, we need to load tydescs out of the environment // before derived tydescs are constructed. To do this, we load them // in the load_env block. let load_env_bcx = new_raw_block_ctxt(fcx, fcx.llloadenv); // The 'llenv' that will arrive in the thunk we're creating is an // environment that will contain the values of its arguments and a pointer // to the original function. So, let's create one of those: // The llenv pointer needs to be the correct size. That size is // 'boxed_closure_ty', which was determined by trans_bind. check (type_has_static_size(ccx, boxed_closure_ty)); let llclosure_ptr_ty = type_of(ccx, sp, boxed_closure_ty); let llclosure = PointerCast(load_env_bcx, fcx.llenv, llclosure_ptr_ty); // "target", in this context, means the function that's having some of its // arguments bound and that will be called inside the thunk we're // creating. (In our running example, target is the function f.) Pick // out the pointer to the target function from the environment. The // target function lives in the first binding spot. let (lltargetfn, lltargetenv, starting_idx) = alt target_fn { some(fptr) { (fptr, llvm::LLVMGetUndef(T_opaque_boxed_closure_ptr(ccx)), 0) } none. { // Silly check check type_is_tup_like(bcx, boxed_closure_ty); let {bcx: cx, val: pair} = GEP_tup_like(bcx, boxed_closure_ty, llclosure, [0, abi::box_rc_field_body, abi::closure_elt_bindings, 0]); let lltargetenv = Load(cx, GEPi(cx, pair, [0, abi::fn_field_box])); let lltargetfn = Load (cx, GEPi(cx, pair, [0, abi::fn_field_code])); bcx = cx; (lltargetfn, lltargetenv, 1) } }; // And then, pick out the target function's own environment. That's what // we'll use as the environment the thunk gets. // Get f's return type, which will also be the return type of the entire // bind expression. let outgoing_ret_ty = ty::ty_fn_ret(cx.ccx.tcx, outgoing_fty); // Get the types of the arguments to f. let outgoing_args = ty::ty_fn_args(cx.ccx.tcx, outgoing_fty); // The 'llretptr' that will arrive in the thunk we're creating also needs // to be the correct type. Cast it to f's return type, if necessary. let llretptr = fcx.llretptr; let ccx = cx.ccx; if ty::type_contains_params(ccx.tcx, outgoing_ret_ty) { check non_ty_var(ccx, outgoing_ret_ty); let llretty = type_of_inner(ccx, sp, outgoing_ret_ty); llretptr = PointerCast(bcx, llretptr, T_ptr(llretty)); } // Set up the three implicit arguments to the thunk. let llargs: [ValueRef] = [llretptr, lltargetenv]; // Copy in the type parameters. let i: uint = 0u; while i < ty_param_count { // Silly check check type_is_tup_like(load_env_bcx, boxed_closure_ty); let lltyparam_ptr = GEP_tup_like(load_env_bcx, boxed_closure_ty, llclosure, [0, abi::box_rc_field_body, abi::closure_elt_ty_params, i as int]); load_env_bcx = lltyparam_ptr.bcx; let td = Load(load_env_bcx, lltyparam_ptr.val); llargs += [td]; fcx.lltydescs += [td]; i += 1u; } let a: uint = 2u; // retptr, env come first let b: int = starting_idx; let outgoing_arg_index: uint = 0u; let llout_arg_tys: [TypeRef] = type_of_explicit_args(cx.ccx, sp, outgoing_args); for arg: option::t<@ast::expr> in args { let out_arg = outgoing_args[outgoing_arg_index]; let llout_arg_ty = llout_arg_tys[outgoing_arg_index]; alt arg { // Arg provided at binding time; thunk copies it from // closure. some(e) { // Silly check check type_is_tup_like(bcx, boxed_closure_ty); let bound_arg = GEP_tup_like(bcx, boxed_closure_ty, llclosure, [0, abi::box_rc_field_body, abi::closure_elt_bindings, b]); bcx = bound_arg.bcx; let val = bound_arg.val; if out_arg.mode == ast::by_val { val = Load(bcx, val); } if out_arg.mode == ast::by_copy { let {bcx: cx, val: alloc} = alloc_ty(bcx, out_arg.ty); bcx = memmove_ty(cx, alloc, val, out_arg.ty); bcx = take_ty(bcx, alloc, out_arg.ty); val = alloc; } // If the type is parameterized, then we need to cast the // type we actually have to the parameterized out type. if ty::type_contains_params(cx.ccx.tcx, out_arg.ty) { val = PointerCast(bcx, val, llout_arg_ty); } llargs += [val]; b += 1; } // Arg will be provided when the thunk is invoked. none. { let arg: ValueRef = llvm::LLVMGetParam(llthunk, a); if ty::type_contains_params(cx.ccx.tcx, out_arg.ty) { arg = PointerCast(bcx, arg, llout_arg_ty); } llargs += [arg]; a += 1u; } } outgoing_arg_index += 1u; } // Cast the outgoing function to the appropriate type. // This is necessary because the type of the function that we have // in the closure does not know how many type descriptors the function // needs to take. let ccx = bcx_ccx(bcx); check returns_non_ty_var(ccx, outgoing_fty); let lltargetty = type_of_fn_from_ty(ccx, sp, outgoing_fty, ty_param_count); lltargetfn = PointerCast(bcx, lltargetfn, T_ptr(lltargetty)); Call(bcx, lltargetfn, llargs); build_return(bcx); finish_fn(fcx, lltop); ret {val: llthunk, ty: llthunk_ty}; }