use libc::c_uint; use syntax::ast; use syntax::ast_util; use lib::llvm::llvm; use lib::llvm::{ValueRef, TypeRef}; use common::*; use build::*; use base::*; use type_of::*; use back::abi; use syntax::codemap::span; use syntax::print::pprust::expr_to_str; use back::link::{ mangle_internal_name_by_path, mangle_internal_name_by_path_and_seq}; use util::ppaux::ty_to_str; use syntax::ast_map::{path, path_mod, path_name}; use driver::session::session; use std::map::HashMap; use datum::{Datum, INIT, ByRef, ByValue, FromLvalue}; // ___Good to know (tm)__________________________________________________ // // The layout of a closure environment in memory is // roughly as follows: // // struct rust_opaque_box { // see rust_internal.h // unsigned ref_count; // only used for fn@() // type_desc *tydesc; // describes closure_data struct // rust_opaque_box *prev; // (used internally by memory alloc) // rust_opaque_box *next; // (used internally by memory alloc) // struct closure_data { // type_desc *bound_tdescs[]; // bound descriptors // struct { // upvar1_t upvar1; // ... // upvarN_t upvarN; // } bound_data; // } // }; // // Note that the closure is itself a rust_opaque_box. This is true // even for fn~ and fn&, because we wish to keep binary compatibility // between all kinds of closures. The allocation strategy for this // closure depends on the closure type. For a sendfn, the closure // (and the referenced type descriptors) will be allocated in the // exchange heap. For a fn, the closure is allocated in the task heap // and is reference counted. For a block, the closure is allocated on // the stack. // // ## Opaque closures and the embedded type descriptor ## // // One interesting part of closures is that they encapsulate the data // that they close over. So when I have a ptr to a closure, I do not // know how many type descriptors it contains nor what upvars are // captured within. That means I do not know precisely how big it is // nor where its fields are located. This is called an "opaque // closure". // // Typically an opaque closure suffices because we only manipulate it // by ptr. The routine common::T_opaque_box_ptr() returns an // appropriate type for such an opaque closure; it allows access to // the box fields, but not the closure_data itself. // // But sometimes, such as when cloning or freeing a closure, we need // to know the full information. That is where the type descriptor // that defines the closure comes in handy. We can use its take and // drop glue functions to allocate/free data as needed. // // ## Subtleties concerning alignment ## // // It is important that we be able to locate the closure data *without // knowing the kind of data that is being bound*. This can be tricky // because the alignment requirements of the bound data affects the // alignment requires of the closure_data struct as a whole. However, // right now this is a non-issue in any case, because the size of the // rust_opaque_box header is always a mutiple of 16-bytes, which is // the maximum alignment requirement we ever have to worry about. // // The only reason alignment matters is that, in order to learn what data // is bound, we would normally first load the type descriptors: but their // location is ultimately depend on their content! There is, however, a // workaround. We can load the tydesc from the rust_opaque_box, which // describes the closure_data struct and has self-contained derived type // descriptors, and read the alignment from there. It's just annoying to // do. Hopefully should this ever become an issue we'll have monomorphized // and type descriptors will all be a bad dream. // // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ enum EnvAction { /// Copy the value from this llvm ValueRef into the environment. EnvStore, /// Move the value from this llvm ValueRef into the environment. EnvMove, /// Access by reference (used for stack closures). EnvRef } struct EnvValue { action: EnvAction, datum: Datum } impl EnvAction { fn to_str() -> ~str { match self { EnvStore => ~"EnvStore", EnvMove => ~"EnvMove", EnvRef => ~"EnvRef" } } } impl EnvValue { fn to_str(ccx: @crate_ctxt) -> ~str { fmt!("%s(%s)", self.action.to_str(), self.datum.to_str(ccx)) } } fn mk_tuplified_uniq_cbox_ty(tcx: ty::ctxt, cdata_ty: ty::t) -> ty::t { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); return ty::mk_imm_uniq(tcx, cbox_ty); } // Given a closure ty, emits a corresponding tuple ty fn mk_closure_tys(tcx: ty::ctxt, bound_values: ~[EnvValue]) -> ty::t { // determine the types of the values in the env. Note that this // is the actual types that will be stored in the map, not the // logical types as the user sees them, so by-ref upvars must be // converted to ptrs. let bound_tys = bound_values.map(|bv| { match bv.action { EnvStore | EnvMove => bv.datum.ty, EnvRef => ty::mk_mut_ptr(tcx, bv.datum.ty) } }); let cdata_ty = ty::mk_tup(tcx, bound_tys); debug!("cdata_ty=%s", ty_to_str(tcx, cdata_ty)); return cdata_ty; } fn allocate_cbox(bcx: block, proto: ast::Proto, cdata_ty: ty::t) -> Result { let _icx = bcx.insn_ctxt("closure::allocate_cbox"); let ccx = bcx.ccx(), tcx = ccx.tcx; fn nuke_ref_count(bcx: block, llbox: ValueRef) { let _icx = bcx.insn_ctxt("closure::nuke_ref_count"); // Initialize ref count to arbitrary value for debugging: let ccx = bcx.ccx(); let llbox = PointerCast(bcx, llbox, T_opaque_box_ptr(ccx)); let ref_cnt = GEPi(bcx, llbox, [0u, abi::box_field_refcnt]); let rc = C_int(ccx, 0x12345678); Store(bcx, rc, ref_cnt); } // Allocate and initialize the box: match proto { ast::ProtoBox => { malloc_raw(bcx, cdata_ty, heap_shared) } ast::ProtoUniq => { malloc_raw(bcx, cdata_ty, heap_exchange) } ast::ProtoBorrowed => { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let llbox = base::alloc_ty(bcx, cbox_ty); nuke_ref_count(bcx, llbox); rslt(bcx, llbox) } ast::ProtoBare => { let cdata_llty = type_of(bcx.ccx(), cdata_ty); rslt(bcx, C_null(cdata_llty)) } } } type closure_result = { llbox: ValueRef, // llvalue of ptr to closure cdata_ty: ty::t, // type of the closure data bcx: block // final bcx }; // Given a block context and a list of tydescs and values to bind // construct a closure out of them. If copying is true, it is a // heap allocated closure that copies the upvars into environment. // Otherwise, it is stack allocated and copies pointers to the upvars. fn store_environment(bcx: block, bound_values: ~[EnvValue], proto: ast::Proto) -> closure_result { let _icx = bcx.insn_ctxt("closure::store_environment"); let ccx = bcx.ccx(), tcx = ccx.tcx; // compute the shape of the closure let cdata_ty = mk_closure_tys(tcx, bound_values); // allocate closure in the heap let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, proto, cdata_ty); let mut temp_cleanups = ~[]; // cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a // tuple. This could be a ptr in uniq or a box or on stack, // whatever. let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let cboxptr_ty = ty::mk_ptr(tcx, {ty:cbox_ty, mutbl:ast::m_imm}); let llbox = PointerCast(bcx, llbox, type_of(ccx, cboxptr_ty)); debug!("tuplify_box_ty = %s", ty_to_str(tcx, cbox_ty)); // Copy expr values into boxed bindings. let mut bcx = bcx; for vec::eachi(bound_values) |i, bv| { debug!("Copy %s into closure", bv.to_str(ccx)); if !ccx.sess.no_asm_comments() { add_comment(bcx, fmt!("Copy %s into closure", bv.to_str(ccx))); } let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]); match bv.action { EnvStore => { bcx = bv.datum.store_to(bcx, INIT, bound_data); } EnvMove => { bcx = bv.datum.move_to(bcx, INIT, bound_data); } EnvRef => { Store(bcx, bv.datum.to_ref_llval(bcx), bound_data); } } } for vec::each(temp_cleanups) |cleanup| { revoke_clean(bcx, *cleanup); } return {llbox: llbox, cdata_ty: cdata_ty, bcx: bcx}; } // Given a context and a list of upvars, build a closure. This just // collects the upvars and packages them up for store_environment. fn build_closure(bcx0: block, cap_vars: ~[capture::capture_var], proto: ast::Proto, include_ret_handle: Option) -> closure_result { let _icx = bcx0.insn_ctxt("closure::build_closure"); // If we need to, package up the iterator body to call let mut bcx = bcx0;; let ccx = bcx.ccx(), tcx = ccx.tcx; // Package up the captured upvars let mut env_vals = ~[]; for vec::each(cap_vars) |cap_var| { debug!("Building closure: captured variable %?", *cap_var); let datum = expr::trans_local_var(bcx, cap_var.def); match cap_var.mode { capture::cap_ref => { assert proto == ast::ProtoBorrowed; env_vals.push(EnvValue {action: EnvRef, datum: datum}); } capture::cap_copy => { env_vals.push(EnvValue {action: EnvStore, datum: datum}); } capture::cap_move => { env_vals.push(EnvValue {action: EnvMove, datum: datum}); } capture::cap_drop => { bcx = datum.drop_val(bcx); datum.cancel_clean(bcx); } } } // If this is a `for` loop body, add two special environment // variables: do option::iter(&include_ret_handle) |flagptr| { // Flag indicating we have returned (a by-ref bool): let flag_datum = Datum {val: *flagptr, ty: ty::mk_bool(tcx), mode: ByRef, source: FromLvalue}; env_vals.push(EnvValue {action: EnvRef, datum: flag_datum}); // Return value (we just pass a by-ref () and cast it later to // the right thing): let ret_true = match bcx.fcx.loop_ret { Some({retptr, _}) => retptr, None => bcx.fcx.llretptr }; let ret_casted = PointerCast(bcx, ret_true, T_ptr(T_nil())); let ret_datum = Datum {val: ret_casted, ty: ty::mk_nil(tcx), mode: ByRef, source: FromLvalue}; env_vals.push(EnvValue {action: EnvRef, datum: ret_datum}); } return store_environment(bcx, env_vals, proto); } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. fn load_environment(fcx: fn_ctxt, cdata_ty: ty::t, cap_vars: ~[capture::capture_var], load_ret_handle: bool, proto: ast::Proto) { let _icx = fcx.insn_ctxt("closure::load_environment"); let llloadenv = match fcx.llloadenv { Some(ll) => ll, None => { let ll = str::as_c_str(~"load_env", |buf| llvm::LLVMAppendBasicBlock(fcx.llfn, buf)); fcx.llloadenv = Some(ll); ll } }; let bcx = raw_block(fcx, false, llloadenv); // Load a pointer to the closure data, skipping over the box header: let llcdata = base::opaque_box_body(bcx, cdata_ty, fcx.llenv); // Populate the upvars from the environment. let mut i = 0u; for vec::each(cap_vars) |cap_var| { match cap_var.mode { capture::cap_drop => { /* ignore */ } _ => { let mut upvarptr = GEPi(bcx, llcdata, [0u, i]); match proto { ast::ProtoBorrowed => { upvarptr = Load(bcx, upvarptr); } ast::ProtoBox | ast::ProtoUniq | ast::ProtoBare => {} } let def_id = ast_util::def_id_of_def(cap_var.def); fcx.llupvars.insert(def_id.node, upvarptr); i += 1u; } } } if load_ret_handle { let flagptr = Load(bcx, GEPi(bcx, llcdata, [0u, i])); let retptr = Load(bcx, GEPi(bcx, llcdata, [0u, i+1u])); fcx.loop_ret = Some({flagptr: flagptr, retptr: retptr}); } } fn trans_expr_fn(bcx: block, proto: ast::Proto, decl: ast::fn_decl, body: ast::blk, id: ast::node_id, cap_clause: ast::capture_clause, is_loop_body: Option>, dest: expr::Dest) -> block { let _icx = bcx.insn_ctxt("closure::trans_expr_fn"); let dest_addr = match dest { expr::SaveIn(p) => p, expr::Ignore => { return bcx; // closure construction is non-side-effecting } }; let ccx = bcx.ccx(); let fty = node_id_type(bcx, id); let llfnty = type_of_fn_from_ty(ccx, fty); let sub_path = vec::append_one(bcx.fcx.path, path_name(special_idents::anon)); let s = mangle_internal_name_by_path_and_seq(ccx, sub_path, ~"expr_fn"); let llfn = decl_internal_cdecl_fn(ccx.llmod, s, llfnty); let trans_closure_env = fn@(proto: ast::Proto) -> Result { let cap_vars = capture::compute_capture_vars(ccx.tcx, id, proto, cap_clause); let ret_handle = match is_loop_body { Some(x) => x, None => None }; let {llbox, cdata_ty, bcx} = build_closure(bcx, cap_vars, proto, ret_handle); trans_closure(ccx, sub_path, decl, body, llfn, no_self, bcx.fcx.param_substs, id, None, |fcx| { load_environment(fcx, cdata_ty, cap_vars, ret_handle.is_some(), proto); }, |bcx| { if is_loop_body.is_some() { Store(bcx, C_bool(true), bcx.fcx.llretptr); } }); rslt(bcx, llbox) }; let Result {bcx: bcx, val: closure} = match proto { ast::ProtoBorrowed | ast::ProtoBox | ast::ProtoUniq => { trans_closure_env(proto) } ast::ProtoBare => { trans_closure(ccx, sub_path, decl, body, llfn, no_self, None, id, None, |_fcx| { }, |_bcx| { }); rslt(bcx, C_null(T_opaque_box_ptr(ccx))) } }; fill_fn_pair(bcx, dest_addr, llfn, closure); return bcx; } fn make_fn_glue( cx: block, v: ValueRef, t: ty::t, glue_fn: fn@(block, v: ValueRef, t: ty::t) -> block) -> block { let _icx = cx.insn_ctxt("closure::make_fn_glue"); let bcx = cx; let tcx = cx.tcx(); let proto = ty::ty_fn_proto(t); match proto { ast::ProtoBare | ast::ProtoBorrowed => bcx, ast::ProtoUniq | ast::ProtoBox => { let box_cell_v = GEPi(cx, v, [0u, abi::fn_field_box]); let box_ptr_v = Load(cx, box_cell_v); do with_cond(cx, IsNotNull(cx, box_ptr_v)) |bcx| { let closure_ty = ty::mk_opaque_closure_ptr(tcx, proto); glue_fn(bcx, box_cell_v, closure_ty) } } } } fn make_opaque_cbox_take_glue( bcx: block, proto: ast::Proto, cboxptr: ValueRef) // ptr to ptr to the opaque closure -> block { // Easy cases: let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_take_glue"); match proto { ast::ProtoBare | ast::ProtoBorrowed => { return bcx; } ast::ProtoBox => { glue::incr_refcnt_of_boxed(bcx, Load(bcx, cboxptr)); return bcx; } ast::ProtoUniq => { /* hard case: fallthrough to code below */ } } // fn~ requires a deep copy. let ccx = bcx.ccx(), tcx = ccx.tcx; let llopaquecboxty = T_opaque_box_ptr(ccx); let cbox_in = Load(bcx, cboxptr); do with_cond(bcx, IsNotNull(bcx, cbox_in)) |bcx| { // Load the size from the type descr found in the cbox let cbox_in = PointerCast(bcx, cbox_in, llopaquecboxty); let tydescptr = GEPi(bcx, cbox_in, [0u, abi::box_field_tydesc]); let tydesc = Load(bcx, tydescptr); let tydesc = PointerCast(bcx, tydesc, T_ptr(ccx.tydesc_type)); let sz = Load(bcx, GEPi(bcx, tydesc, [0u, abi::tydesc_field_size])); // Adjust sz to account for the rust_opaque_box header fields let sz = Add(bcx, sz, shape::llsize_of(ccx, T_box_header(ccx))); // Allocate memory, update original ptr, and copy existing data let malloc = ~"exchange_malloc"; let opaque_tydesc = PointerCast(bcx, tydesc, T_ptr(T_i8())); let rval = alloca_zeroed(bcx, T_ptr(T_i8())); let bcx = callee::trans_rtcall(bcx, malloc, ~[opaque_tydesc, sz], expr::SaveIn(rval)); let cbox_out = PointerCast(bcx, Load(bcx, rval), llopaquecboxty); call_memcpy(bcx, cbox_out, cbox_in, sz); Store(bcx, cbox_out, cboxptr); // Take the (deeply cloned) type descriptor let tydesc_out = GEPi(bcx, cbox_out, [0u, abi::box_field_tydesc]); let bcx = glue::take_ty(bcx, tydesc_out, ty::mk_type(tcx)); // Take the data in the tuple let cdata_out = GEPi(bcx, cbox_out, [0u, abi::box_field_body]); glue::call_tydesc_glue_full(bcx, cdata_out, tydesc, abi::tydesc_field_take_glue, None); bcx } } fn make_opaque_cbox_drop_glue( bcx: block, proto: ast::Proto, cboxptr: ValueRef) // ptr to the opaque closure -> block { let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_drop_glue"); match proto { ast::ProtoBare | ast::ProtoBorrowed => bcx, ast::ProtoBox => { glue::decr_refcnt_maybe_free( bcx, Load(bcx, cboxptr), ty::mk_opaque_closure_ptr(bcx.tcx(), proto)) } ast::ProtoUniq => { glue::free_ty( bcx, cboxptr, ty::mk_opaque_closure_ptr(bcx.tcx(), proto)) } } } fn make_opaque_cbox_free_glue( bcx: block, proto: ast::Proto, cbox: ValueRef) // ptr to ptr to the opaque closure -> block { let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_free_glue"); match proto { ast::ProtoBare | ast::ProtoBorrowed => { return bcx; } ast::ProtoBox | ast::ProtoUniq => { /* hard cases: fallthrough to code below */ } } let ccx = bcx.ccx(); do with_cond(bcx, IsNotNull(bcx, cbox)) |bcx| { // Load the type descr found in the cbox let lltydescty = T_ptr(ccx.tydesc_type); let cbox = Load(bcx, cbox); let tydescptr = GEPi(bcx, cbox, [0u, abi::box_field_tydesc]); let tydesc = Load(bcx, tydescptr); let tydesc = PointerCast(bcx, tydesc, lltydescty); // Drop the tuple data then free the descriptor let cdata = GEPi(bcx, cbox, [0u, abi::box_field_body]); glue::call_tydesc_glue_full(bcx, cdata, tydesc, abi::tydesc_field_drop_glue, None); // Free the ty descr (if necc) and the box itself match proto { ast::ProtoBox => glue::trans_free(bcx, cbox), ast::ProtoUniq => glue::trans_unique_free(bcx, cbox), ast::ProtoBare | ast::ProtoBorrowed => { bcx.sess().bug(~"impossible") } } } }