//! Random number generation // NB: transitional, de-mode-ing. #[forbid(deprecated_mode)]; #[forbid(deprecated_pattern)]; #[allow(non_camel_case_types)] // runtime type enum rctx {} #[abi = "cdecl"] extern mod rustrt { fn rand_seed() -> ~[u8]; fn rand_new() -> *rctx; fn rand_new_seeded2(&&seed: ~[u8]) -> *rctx; fn rand_next(c: *rctx) -> u32; fn rand_free(c: *rctx); } /// A random number generator pub trait Rng { /// Return the next random integer fn next() -> u32; } /// A value with a particular weight compared to other values pub type Weighted = { weight: uint, item: T }; /// Extension methods for random number generators impl Rng { /// Return a random int fn gen_int() -> int { self.gen_i64() as int } /** * Return an int randomly chosen from the range [start, end), * failing if start >= end */ fn gen_int_range(start: int, end: int) -> int { assert start < end; start + int::abs(self.gen_int() % (end - start)) } /// Return a random i8 fn gen_i8() -> i8 { self.next() as i8 } /// Return a random i16 fn gen_i16() -> i16 { self.next() as i16 } /// Return a random i32 fn gen_i32() -> i32 { self.next() as i32 } /// Return a random i64 fn gen_i64() -> i64 { (self.next() as i64 << 32) | self.next() as i64 } /// Return a random uint fn gen_uint() -> uint { self.gen_u64() as uint } /** * Return a uint randomly chosen from the range [start, end), * failing if start >= end */ fn gen_uint_range(start: uint, end: uint) -> uint { assert start < end; start + (self.gen_uint() % (end - start)) } /// Return a random u8 fn gen_u8() -> u8 { self.next() as u8 } /// Return a random u16 fn gen_u16() -> u16 { self.next() as u16 } /// Return a random u32 fn gen_u32() -> u32 { self.next() } /// Return a random u64 fn gen_u64() -> u64 { (self.next() as u64 << 32) | self.next() as u64 } /// Return a random float in the interval [0,1] fn gen_float() -> float { self.gen_f64() as float } /// Return a random f32 in the interval [0,1] fn gen_f32() -> f32 { self.gen_f64() as f32 } /// Return a random f64 in the interval [0,1] fn gen_f64() -> f64 { let u1 = self.next() as f64; let u2 = self.next() as f64; let u3 = self.next() as f64; const scale : f64 = (u32::max_value as f64) + 1.0f64; return ((u1 / scale + u2) / scale + u3) / scale; } /// Return a random char fn gen_char() -> char { self.next() as char } /** * Return a char randomly chosen from chars, failing if chars is empty */ fn gen_char_from(chars: &str) -> char { assert !chars.is_empty(); self.choose(str::chars(chars)) } /// Return a random bool fn gen_bool() -> bool { self.next() & 1u32 == 1u32 } /// Return a bool with a 1 in n chance of true fn gen_weighted_bool(n: uint) -> bool { if n == 0u { true } else { self.gen_uint_range(1u, n + 1u) == 1u } } /** * Return a random string of the specified length composed of A-Z,a-z,0-9 */ fn gen_str(len: uint) -> ~str { let charset = ~"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"; let mut s = ~""; let mut i = 0u; while (i < len) { s = s + str::from_char(self.gen_char_from(charset)); i += 1u; } move s } /// Return a random byte string of the specified length fn gen_bytes(len: uint) -> ~[u8] { do vec::from_fn(len) |_i| { self.gen_u8() } } /// Choose an item randomly, failing if values is empty fn choose(values: &[T]) -> T { self.choose_option(values).get() } /// Choose Some(item) randomly, returning None if values is empty fn choose_option(values: &[T]) -> Option { if values.is_empty() { None } else { Some(values[self.gen_uint_range(0u, values.len())]) } } /** * Choose an item respecting the relative weights, failing if the sum of * the weights is 0 */ fn choose_weighted(v : &[Weighted]) -> T { self.choose_weighted_option(v).get() } /** * Choose Some(item) respecting the relative weights, returning none if * the sum of the weights is 0 */ fn choose_weighted_option(v: &[Weighted]) -> Option { let mut total = 0u; for v.each |item| { total += item.weight; } if total == 0u { return None; } let chosen = self.gen_uint_range(0u, total); let mut so_far = 0u; for v.each |item| { so_far += item.weight; if so_far > chosen { return Some(item.item); } } util::unreachable(); } /** * Return a vec containing copies of the items, in order, where * the weight of the item determines how many copies there are */ fn weighted_vec(v: &[Weighted]) -> ~[T] { let mut r = ~[]; for v.each |item| { for uint::range(0u, item.weight) |_i| { r.push(item.item); } } move r } /// Shuffle a vec fn shuffle(values: &[T]) -> ~[T] { let mut m = vec::from_slice(values); self.shuffle_mut(m); move m } /// Shuffle a mutable vec in place fn shuffle_mut(values: &[mut T]) { let mut i = values.len(); while i >= 2u { // invariant: elements with index >= i have been locked in place. i -= 1u; // lock element i in place. vec::swap(values, i, self.gen_uint_range(0u, i + 1u)); } } } struct RandRes { c: *rctx, drop { rustrt::rand_free(self.c); } } fn RandRes(c: *rctx) -> RandRes { RandRes { c: c } } impl @RandRes: Rng { fn next() -> u32 { return rustrt::rand_next((*self).c); } } /// Create a new random seed for seeded_rng pub fn seed() -> ~[u8] { rustrt::rand_seed() } /// Create a random number generator with a system specified seed pub fn Rng() -> Rng { @RandRes(rustrt::rand_new()) as Rng } /** * Create a random number generator using the specified seed. A generator * constructed with a given seed will generate the same sequence of values as * all other generators constructed with the same seed. The seed may be any * length. */ pub fn seeded_rng(seed: &~[u8]) -> Rng { @RandRes(rustrt::rand_new_seeded2(*seed)) as Rng } type XorShiftState = { mut x: u32, mut y: u32, mut z: u32, mut w: u32 }; impl XorShiftState: Rng { fn next() -> u32 { let x = self.x; let mut t = x ^ (x << 11); self.x = self.y; self.y = self.z; self.z = self.w; let w = self.w; self.w = w ^ (w >> 19) ^ (t ^ (t >> 8)); self.w } } pub fn xorshift() -> Rng { // constants taken from http://en.wikipedia.org/wiki/Xorshift seeded_xorshift(123456789u32, 362436069u32, 521288629u32, 88675123u32) } pub fn seeded_xorshift(x: u32, y: u32, z: u32, w: u32) -> Rng { {mut x: x, mut y: y, mut z: z, mut w: w} as Rng } // used to make space in TLS for a random number generator fn tls_rng_state(_v: @RandRes) {} /** * Gives back a lazily initialized task-local random number generator, * seeded by the system. Intended to be used in method chaining style, ie * task_rng().gen_int(). */ pub fn task_rng() -> Rng { let r : Option<@RandRes>; unsafe { r = task::local_data::local_data_get(tls_rng_state); } match r { None => { let rng = @RandRes(rustrt::rand_new()); unsafe { task::local_data::local_data_set(tls_rng_state, rng); } rng as Rng } Some(rng) => rng as Rng } } /** * Returns a random uint, using the task's based random number generator. */ pub fn random() -> uint { task_rng().gen_uint() } #[cfg(test)] pub mod tests { #[test] pub fn rng_seeded() { let seed = rand::seed(); let ra = rand::seeded_rng(&seed); let rb = rand::seeded_rng(&seed); assert ra.gen_str(100u) == rb.gen_str(100u); } #[test] pub fn rng_seeded_custom_seed() { // much shorter than generated seeds which are 1024 bytes let seed = ~[2u8, 32u8, 4u8, 32u8, 51u8]; let ra = rand::seeded_rng(&seed); let rb = rand::seeded_rng(&seed); assert ra.gen_str(100u) == rb.gen_str(100u); } #[test] pub fn rng_seeded_custom_seed2() { let seed = ~[2u8, 32u8, 4u8, 32u8, 51u8]; let ra = rand::seeded_rng(&seed); // Regression test that isaac is actually using the above vector let r = ra.next(); error!("%?", r); assert r == 890007737u32 // on x86_64 || r == 2935188040u32; // on x86 } #[test] pub fn gen_int_range() { let r = rand::Rng(); let a = r.gen_int_range(-3, 42); assert a >= -3 && a < 42; assert r.gen_int_range(0, 1) == 0; assert r.gen_int_range(-12, -11) == -12; } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn gen_int_from_fail() { rand::Rng().gen_int_range(5, -2); } #[test] pub fn gen_uint_range() { let r = rand::Rng(); let a = r.gen_uint_range(3u, 42u); assert a >= 3u && a < 42u; assert r.gen_uint_range(0u, 1u) == 0u; assert r.gen_uint_range(12u, 13u) == 12u; } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn gen_uint_range_fail() { rand::Rng().gen_uint_range(5u, 2u); } #[test] pub fn gen_float() { let r = rand::Rng(); let a = r.gen_float(); let b = r.gen_float(); log(debug, (a, b)); } #[test] pub fn gen_weighted_bool() { let r = rand::Rng(); assert r.gen_weighted_bool(0u) == true; assert r.gen_weighted_bool(1u) == true; } #[test] pub fn gen_str() { let r = rand::Rng(); log(debug, r.gen_str(10u)); log(debug, r.gen_str(10u)); log(debug, r.gen_str(10u)); assert r.gen_str(0u).len() == 0u; assert r.gen_str(10u).len() == 10u; assert r.gen_str(16u).len() == 16u; } #[test] pub fn gen_bytes() { let r = rand::Rng(); assert r.gen_bytes(0u).len() == 0u; assert r.gen_bytes(10u).len() == 10u; assert r.gen_bytes(16u).len() == 16u; } #[test] pub fn choose() { let r = rand::Rng(); assert r.choose([1, 1, 1]) == 1; } #[test] pub fn choose_option() { let r = rand::Rng(); let x: Option = r.choose_option([]); assert x.is_none(); assert r.choose_option([1, 1, 1]) == Some(1); } #[test] pub fn choose_weighted() { let r = rand::Rng(); assert r.choose_weighted(~[{weight: 1u, item: 42}]) == 42; assert r.choose_weighted(~[ {weight: 0u, item: 42}, {weight: 1u, item: 43} ]) == 43; } #[test] pub fn choose_weighted_option() { let r = rand::Rng(); assert r.choose_weighted_option(~[{weight: 1u, item: 42}]) == Some(42); assert r.choose_weighted_option(~[ {weight: 0u, item: 42}, {weight: 1u, item: 43} ]) == Some(43); let v: Option = r.choose_weighted_option([]); assert v.is_none(); } #[test] pub fn weighted_vec() { let r = rand::Rng(); let empty: ~[int] = ~[]; assert r.weighted_vec(~[]) == empty; assert r.weighted_vec(~[ {weight: 0u, item: 3u}, {weight: 1u, item: 2u}, {weight: 2u, item: 1u} ]) == ~[2u, 1u, 1u]; } #[test] pub fn shuffle() { let r = rand::Rng(); let empty: ~[int] = ~[]; assert r.shuffle(~[]) == empty; assert r.shuffle(~[1, 1, 1]) == ~[1, 1, 1]; } #[test] pub fn task_rng() { let r = rand::task_rng(); r.gen_int(); assert r.shuffle(~[1, 1, 1]) == ~[1, 1, 1]; assert r.gen_uint_range(0u, 1u) == 0u; } #[test] pub fn random() { // not sure how to test this aside from just getting a number let _n : uint = rand::random(); } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: