#ifndef RUST_UTIL_H #define RUST_UTIL_H #include "rust_task.h" #include // Utility type: pointer-vector. template ptr_vec::ptr_vec(rust_task *task) : task(task), alloc(INIT_SIZE), fill(0), data(new (task, "ptr_vec") T*[alloc]) { I(task->sched, data); DLOG(task->sched, mem, "new ptr_vec(data=0x%" PRIxPTR ") -> 0x%" PRIxPTR, (uintptr_t)data, (uintptr_t)this); } template ptr_vec::~ptr_vec() { I(task->sched, data); DLOG(task->sched, mem, "~ptr_vec 0x%" PRIxPTR ", data=0x%" PRIxPTR, (uintptr_t)this, (uintptr_t)data); I(task->sched, fill == 0); task->free(data); } template T *& ptr_vec::operator[](size_t offset) { I(task->sched, data[offset]->idx == offset); return data[offset]; } template void ptr_vec::push(T *p) { I(task->sched, data); I(task->sched, fill <= alloc); if (fill == alloc) { alloc *= 2; data = (T **)task->realloc(data, alloc * sizeof(T*)); I(task->sched, data); } I(task->sched, fill < alloc); p->idx = fill; data[fill++] = p; } template T * ptr_vec::pop() { return data[--fill]; } template T * ptr_vec::peek() { return data[fill - 1]; } template void ptr_vec::trim(size_t sz) { I(task->sched, data); if (sz <= (alloc / 4) && (alloc / 2) >= INIT_SIZE) { alloc /= 2; I(task->sched, alloc >= fill); data = (T **)task->realloc(data, alloc * sizeof(T*)); I(task->sched, data); } } template void ptr_vec::swap_delete(T *item) { /* Swap the endpoint into i and decr fill. */ I(task->sched, data); I(task->sched, fill > 0); I(task->sched, item->idx < fill); fill--; if (fill > 0) { T *subst = data[fill]; size_t idx = item->idx; data[idx] = subst; subst->idx = idx; } } // Inline fn used regularly elsewhere. static inline size_t next_power_of_two(size_t s) { size_t tmp = s - 1; tmp |= tmp >> 1; tmp |= tmp >> 2; tmp |= tmp >> 4; tmp |= tmp >> 8; tmp |= tmp >> 16; #ifdef _LP64 tmp |= tmp >> 32; #endif return tmp + 1; } // Rounds |size| to the nearest |alignment|. Invariant: |alignment| is a power // of two. template static inline T align_to(T size, size_t alignment) { assert(alignment); T x = (T)(((uintptr_t)size + alignment - 1) & ~(alignment - 1)); return x; } // Initialization helper for ISAAC RNG template static inline void isaac_init(sched_or_kernel *sched, randctx *rctx) { memset(rctx, 0, sizeof(randctx)); char *rust_seed = sched->env->rust_seed; if (rust_seed != NULL) { ub4 seed = (ub4) atoi(rust_seed); for (size_t i = 0; i < RANDSIZ; i ++) { memcpy(&rctx->randrsl[i], &seed, sizeof(ub4)); seed = (seed + 0x7ed55d16) + (seed << 12); } } else { #ifdef __WIN32__ HCRYPTPROV hProv; sched->win32_require (_T("CryptAcquireContext"), CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT|CRYPT_SILENT)); sched->win32_require (_T("CryptGenRandom"), CryptGenRandom(hProv, sizeof(rctx->randrsl), (BYTE*)(&rctx->randrsl))); sched->win32_require (_T("CryptReleaseContext"), CryptReleaseContext(hProv, 0)); #else int fd = open("/dev/urandom", O_RDONLY); I(sched, fd > 0); I(sched, read(fd, (void*) &rctx->randrsl, sizeof(rctx->randrsl)) == sizeof(rctx->randrsl)); I(sched, close(fd) == 0); #endif } randinit(rctx, 1); } // Interior vectors (rust-user-code level). struct rust_vec { size_t fill; // in bytes; if zero, heapified size_t alloc; // in bytes uint8_t data[0]; }; template inline size_t vec_size(size_t elems) { return sizeof(rust_vec) + sizeof(T) * elems; } inline void reserve_vec(rust_task* task, rust_vec** vpp, size_t size) { if (size > (*vpp)->alloc) { size_t new_alloc = next_power_of_two(size); *vpp = (rust_vec*)task->kernel->realloc(*vpp, new_alloc + sizeof(rust_vec)); (*vpp)->alloc = new_alloc; } } typedef rust_vec rust_str; inline rust_str * make_str(rust_kernel* kernel, char* c, size_t strlen, const char* name) { size_t str_fill = strlen + 1; size_t str_alloc = str_fill; rust_str *str = (rust_str *) kernel->malloc(vec_size(str_fill), name); str->fill = str_fill; str->alloc = str_alloc; memcpy(&str->data, c, strlen); str->data[strlen] = '\0'; return str; } // // Local Variables: // mode: C++ // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: // #endif