// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for 64-bits floats (`f64` type) #![doc(primitive = "f64")] // FIXME: MIN_VALUE and MAX_VALUE literals are parsed as -inf and inf #14353 #![allow(overflowing_literals)] use intrinsics; use mem; use num::{FPNormal, FPCategory, FPZero, FPSubnormal, FPInfinite, FPNaN}; use num::Float; use option::Option; // FIXME(#5527): These constants should be deprecated once associated // constants are implemented in favour of referencing the respective // members of `Bounded` and `Float`. pub const RADIX: uint = 2u; pub const MANTISSA_DIGITS: uint = 53u; pub const DIGITS: uint = 15u; pub const EPSILON: f64 = 2.2204460492503131e-16_f64; /// Smallest finite f64 value pub const MIN_VALUE: f64 = -1.7976931348623157e+308_f64; /// Smallest positive, normalized f64 value pub const MIN_POS_VALUE: f64 = 2.2250738585072014e-308_f64; /// Largest finite f64 value pub const MAX_VALUE: f64 = 1.7976931348623157e+308_f64; pub const MIN_EXP: int = -1021; pub const MAX_EXP: int = 1024; pub const MIN_10_EXP: int = -307; pub const MAX_10_EXP: int = 308; pub const NAN: f64 = 0.0_f64/0.0_f64; pub const INFINITY: f64 = 1.0_f64/0.0_f64; pub const NEG_INFINITY: f64 = -1.0_f64/0.0_f64; /// Various useful constants. pub mod consts { // FIXME: replace with mathematical constants from cmath. // FIXME(#5527): These constants should be deprecated once associated // constants are implemented in favour of referencing the respective members // of `Float`. /// Archimedes' constant pub const PI: f64 = 3.14159265358979323846264338327950288_f64; /// pi * 2.0 pub const PI_2: f64 = 6.28318530717958647692528676655900576_f64; /// pi/2.0 pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64; /// pi/3.0 pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64; /// pi/4.0 pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64; /// pi/6.0 pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64; /// pi/8.0 pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64; /// 1.0/pi pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64; /// 2.0/pi pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64; /// 2.0/sqrt(pi) pub const FRAC_2_SQRTPI: f64 = 1.12837916709551257389615890312154517_f64; /// sqrt(2.0) pub const SQRT2: f64 = 1.41421356237309504880168872420969808_f64; /// 1.0/sqrt(2.0) pub const FRAC_1_SQRT2: f64 = 0.707106781186547524400844362104849039_f64; /// Euler's number pub const E: f64 = 2.71828182845904523536028747135266250_f64; /// log2(e) pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64; /// log10(e) pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64; /// ln(2.0) pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64; /// ln(10.0) pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64; } impl Float for f64 { #[inline] fn nan() -> f64 { NAN } #[inline] fn infinity() -> f64 { INFINITY } #[inline] fn neg_infinity() -> f64 { NEG_INFINITY } #[inline] fn neg_zero() -> f64 { -0.0 } /// Returns `true` if the number is NaN. #[inline] fn is_nan(self) -> bool { self != self } /// Returns `true` if the number is infinite. #[inline] fn is_infinite(self) -> bool { self == Float::infinity() || self == Float::neg_infinity() } /// Returns `true` if the number is neither infinite or NaN. #[inline] fn is_finite(self) -> bool { !(self.is_nan() || self.is_infinite()) } /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. #[inline] fn is_normal(self) -> bool { self.classify() == FPNormal } /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. fn classify(self) -> FPCategory { const EXP_MASK: u64 = 0x7ff0000000000000; const MAN_MASK: u64 = 0x000fffffffffffff; let bits: u64 = unsafe { mem::transmute(self) }; match (bits & MAN_MASK, bits & EXP_MASK) { (0, 0) => FPZero, (_, 0) => FPSubnormal, (0, EXP_MASK) => FPInfinite, (_, EXP_MASK) => FPNaN, _ => FPNormal, } } #[inline] fn mantissa_digits(_: Option) -> uint { MANTISSA_DIGITS } #[inline] fn digits(_: Option) -> uint { DIGITS } #[inline] fn epsilon() -> f64 { EPSILON } #[inline] fn min_exp(_: Option) -> int { MIN_EXP } #[inline] fn max_exp(_: Option) -> int { MAX_EXP } #[inline] fn min_10_exp(_: Option) -> int { MIN_10_EXP } #[inline] fn max_10_exp(_: Option) -> int { MAX_10_EXP } #[inline] fn min_pos_value(_: Option) -> f64 { MIN_POS_VALUE } /// Returns the mantissa, exponent and sign as integers. fn integer_decode(self) -> (u64, i16, i8) { let bits: u64 = unsafe { mem::transmute(self) }; let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; let mantissa = if exponent == 0 { (bits & 0xfffffffffffff) << 1 } else { (bits & 0xfffffffffffff) | 0x10000000000000 }; // Exponent bias + mantissa shift exponent -= 1023 + 52; (mantissa, exponent, sign) } /// Rounds towards minus infinity. #[inline] fn floor(self) -> f64 { unsafe { intrinsics::floorf64(self) } } /// Rounds towards plus infinity. #[inline] fn ceil(self) -> f64 { unsafe { intrinsics::ceilf64(self) } } /// Rounds to nearest integer. Rounds half-way cases away from zero. #[inline] fn round(self) -> f64 { unsafe { intrinsics::roundf64(self) } } /// Returns the integer part of the number (rounds towards zero). #[inline] fn trunc(self) -> f64 { unsafe { intrinsics::truncf64(self) } } /// The fractional part of the number, satisfying: /// /// ```rust /// let x = 1.65f64; /// assert!(x == x.trunc() + x.fract()) /// ``` #[inline] fn fract(self) -> f64 { self - self.trunc() } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. #[inline] fn mul_add(self, a: f64, b: f64) -> f64 { unsafe { intrinsics::fmaf64(self, a, b) } } /// Returns the reciprocal (multiplicative inverse) of the number. #[inline] fn recip(self) -> f64 { 1.0 / self } #[inline] fn powf(self, n: f64) -> f64 { unsafe { intrinsics::powf64(self, n) } } #[inline] fn powi(self, n: i32) -> f64 { unsafe { intrinsics::powif64(self, n) } } /// sqrt(2.0) #[inline] fn sqrt2() -> f64 { consts::SQRT2 } /// 1.0 / sqrt(2.0) #[inline] fn frac_1_sqrt2() -> f64 { consts::FRAC_1_SQRT2 } #[inline] fn sqrt(self) -> f64 { if self < 0.0 { NAN } else { unsafe { intrinsics::sqrtf64(self) } } } #[inline] fn rsqrt(self) -> f64 { self.sqrt().recip() } /// Archimedes' constant #[inline] fn pi() -> f64 { consts::PI } /// 2.0 * pi #[inline] fn two_pi() -> f64 { consts::PI_2 } /// pi / 2.0 #[inline] fn frac_pi_2() -> f64 { consts::FRAC_PI_2 } /// pi / 3.0 #[inline] fn frac_pi_3() -> f64 { consts::FRAC_PI_3 } /// pi / 4.0 #[inline] fn frac_pi_4() -> f64 { consts::FRAC_PI_4 } /// pi / 6.0 #[inline] fn frac_pi_6() -> f64 { consts::FRAC_PI_6 } /// pi / 8.0 #[inline] fn frac_pi_8() -> f64 { consts::FRAC_PI_8 } /// 1.0 / pi #[inline] fn frac_1_pi() -> f64 { consts::FRAC_1_PI } /// 2.0 / pi #[inline] fn frac_2_pi() -> f64 { consts::FRAC_2_PI } /// 2.0 / sqrt(pi) #[inline] fn frac_2_sqrtpi() -> f64 { consts::FRAC_2_SQRTPI } /// Euler's number #[inline] fn e() -> f64 { consts::E } /// log2(e) #[inline] fn log2_e() -> f64 { consts::LOG2_E } /// log10(e) #[inline] fn log10_e() -> f64 { consts::LOG10_E } /// ln(2.0) #[inline] fn ln_2() -> f64 { consts::LN_2 } /// ln(10.0) #[inline] fn ln_10() -> f64 { consts::LN_10 } /// Returns the exponential of the number. #[inline] fn exp(self) -> f64 { unsafe { intrinsics::expf64(self) } } /// Returns 2 raised to the power of the number. #[inline] fn exp2(self) -> f64 { unsafe { intrinsics::exp2f64(self) } } /// Returns the natural logarithm of the number. #[inline] fn ln(self) -> f64 { unsafe { intrinsics::logf64(self) } } /// Returns the logarithm of the number with respect to an arbitrary base. #[inline] fn log(self, base: f64) -> f64 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number. #[inline] fn log2(self) -> f64 { unsafe { intrinsics::log2f64(self) } } /// Returns the base 10 logarithm of the number. #[inline] fn log10(self) -> f64 { unsafe { intrinsics::log10f64(self) } } /// Converts to degrees, assuming the number is in radians. #[inline] fn to_degrees(self) -> f64 { self * (180.0f64 / Float::pi()) } /// Converts to radians, assuming the number is in degrees. #[inline] fn to_radians(self) -> f64 { let value: f64 = Float::pi(); self * (value / 180.0) } }