// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! A graph module for use in dataflow, region resolution, and elsewhere. # Interface details You customize the graph by specifying a "node data" type `N` and an "edge data" type `E`. You can then later gain access (mutable or immutable) to these "user-data" bits. Currently, you can only add nodes or edges to the graph. You cannot remove or modify them once added. This could be changed if we have a need. # Implementation details The main tricky thing about this code is the way that edges are stored. The edges are stored in a central array, but they are also threaded onto two linked lists for each node, one for incoming edges and one for outgoing edges. Note that every edge is a member of some incoming list and some outgoing list. Basically you can load the first index of the linked list from the node data structures (the field `first_edge`) and then, for each edge, load the next index from the field `next_edge`). Each of those fields is an array that should be indexed by the direction (see the type `Direction`). */ use std::uint; use std::vec; pub struct Graph { priv nodes: ~[Node], priv edges: ~[Edge], } pub struct Node { priv first_edge: [EdgeIndex, ..2], // see module comment data: N, } pub struct Edge { priv next_edge: [EdgeIndex, ..2], // see module comment priv source: NodeIndex, priv target: NodeIndex, data: E, } #[deriving(Eq)] pub struct NodeIndex(uint); pub static InvalidNodeIndex: NodeIndex = NodeIndex(uint::max_value); #[deriving(Eq)] pub struct EdgeIndex(uint); pub static InvalidEdgeIndex: EdgeIndex = EdgeIndex(uint::max_value); // Use a private field here to guarantee no more instances are created: pub struct Direction { priv repr: uint } pub static Outgoing: Direction = Direction { repr: 0 }; pub static Incoming: Direction = Direction { repr: 1 }; impl Graph { pub fn new() -> Graph { Graph {nodes: ~[], edges: ~[]} } pub fn with_capacity(num_nodes: uint, num_edges: uint) -> Graph { Graph {nodes: vec::with_capacity(num_nodes), edges: vec::with_capacity(num_edges)} } /////////////////////////////////////////////////////////////////////////// // Simple accessors #[inline] pub fn all_nodes<'a>(&'a self) -> &'a [Node] { let nodes: &'a [Node] = self.nodes; nodes } #[inline] pub fn all_edges<'a>(&'a self) -> &'a [Edge] { let edges: &'a [Edge] = self.edges; edges } /////////////////////////////////////////////////////////////////////////// // Node construction pub fn next_node_index(&self) -> NodeIndex { NodeIndex(self.nodes.len()) } pub fn add_node(&mut self, data: N) -> NodeIndex { let idx = self.next_node_index(); self.nodes.push(Node { first_edge: [InvalidEdgeIndex, InvalidEdgeIndex], data: data }); idx } pub fn mut_node_data<'a>(&'a mut self, idx: NodeIndex) -> &'a mut N { &mut self.nodes[*idx].data } pub fn node_data<'a>(&'a self, idx: NodeIndex) -> &'a N { &self.nodes[*idx].data } pub fn node<'a>(&'a self, idx: NodeIndex) -> &'a Node { &self.nodes[*idx] } /////////////////////////////////////////////////////////////////////////// // Edge construction and queries pub fn next_edge_index(&self) -> EdgeIndex { EdgeIndex(self.edges.len()) } pub fn add_edge(&mut self, source: NodeIndex, target: NodeIndex, data: E) -> EdgeIndex { let idx = self.next_edge_index(); // read current first of the list of edges from each node let source_first = self.nodes[*source].first_edge[Outgoing.repr]; let target_first = self.nodes[*target].first_edge[Incoming.repr]; // create the new edge, with the previous firsts from each node // as the next pointers self.edges.push(Edge { next_edge: [source_first, target_first], source: source, target: target, data: data }); // adjust the firsts for each node target be the next object. self.nodes[*source].first_edge[Outgoing.repr] = idx; self.nodes[*target].first_edge[Incoming.repr] = idx; return idx; } pub fn mut_edge_data<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut E { &mut self.edges[*idx].data } pub fn edge_data<'a>(&'a self, idx: EdgeIndex) -> &'a E { &self.edges[*idx].data } pub fn edge<'a>(&'a self, idx: EdgeIndex) -> &'a Edge { &self.edges[*idx] } pub fn first_adjacent(&self, node: NodeIndex, dir: Direction) -> EdgeIndex { //! Accesses the index of the first edge adjacent to `node`. //! This is useful if you wish to modify the graph while walking //! the linked list of edges. self.nodes[*node].first_edge[dir.repr] } pub fn next_adjacent(&self, edge: EdgeIndex, dir: Direction) -> EdgeIndex { //! Accesses the next edge in a given direction. //! This is useful if you wish to modify the graph while walking //! the linked list of edges. self.edges[*edge].next_edge[dir.repr] } /////////////////////////////////////////////////////////////////////////// // Iterating over nodes, edges pub fn each_node(&self, f: |NodeIndex, &Node| -> bool) -> bool { //! Iterates over all edges defined in the graph. self.nodes.iter().enumerate().advance(|(i, node)| f(NodeIndex(i), node)) } pub fn each_edge(&self, f: |EdgeIndex, &Edge| -> bool) -> bool { //! Iterates over all edges defined in the graph self.edges.iter().enumerate().advance(|(i, edge)| f(EdgeIndex(i), edge)) } pub fn each_outgoing_edge(&self, source: NodeIndex, f: |EdgeIndex, &Edge| -> bool) -> bool { //! Iterates over all outgoing edges from the node `from` self.each_adjacent_edge(source, Outgoing, f) } pub fn each_incoming_edge(&self, target: NodeIndex, f: |EdgeIndex, &Edge| -> bool) -> bool { //! Iterates over all incoming edges to the node `target` self.each_adjacent_edge(target, Incoming, f) } pub fn each_adjacent_edge(&self, node: NodeIndex, dir: Direction, f: |EdgeIndex, &Edge| -> bool) -> bool { //! Iterates over all edges adjacent to the node `node` //! in the direction `dir` (either `Outgoing` or `Incoming) let mut edge_idx = self.first_adjacent(node, dir); while edge_idx != InvalidEdgeIndex { let edge = &self.edges[*edge_idx]; if !f(edge_idx, edge) { return false; } edge_idx = edge.next_edge[dir.repr]; } return true; } /////////////////////////////////////////////////////////////////////////// // Fixed-point iteration // // A common use for graphs in our compiler is to perform // fixed-point iteration. In this case, each edge represents a // constaint, and the nodes themselves are associated with // variables or other bitsets. This method facilitates such a // computation. pub fn iterate_until_fixed_point(&self, op: |iter_index: uint, edge_index: EdgeIndex, edge: &Edge| -> bool) { let mut iteration = 0; let mut changed = true; while changed { changed = false; iteration += 1; for (i, edge) in self.edges.iter().enumerate() { changed |= op(iteration, EdgeIndex(i), edge); } } } } pub fn each_edge_index(max_edge_index: EdgeIndex, f: |EdgeIndex| -> bool) { let mut i = 0; let n = *max_edge_index; while i < n { if !f(EdgeIndex(i)) { return; } i += 1; } } impl Edge { pub fn source(&self) -> NodeIndex { self.source } pub fn target(&self) -> NodeIndex { self.target } } #[cfg(test)] mod test { use middle::graph::*; type TestNode = Node<&'static str>; type TestEdge = Edge<&'static str>; type TestGraph = Graph<&'static str, &'static str>; fn create_graph() -> TestGraph { let mut graph = Graph::new(); // Create a simple graph // // A -+> B --> C // | | ^ // | v | // F D --> E let a = graph.add_node("A"); let b = graph.add_node("B"); let c = graph.add_node("C"); let d = graph.add_node("D"); let e = graph.add_node("E"); let f = graph.add_node("F"); graph.add_edge(a, b, "AB"); graph.add_edge(b, c, "BC"); graph.add_edge(b, d, "BD"); graph.add_edge(d, e, "DE"); graph.add_edge(e, c, "EC"); graph.add_edge(f, b, "FB"); return graph; } #[test] fn each_node() { let graph = create_graph(); let expected = ["A", "B", "C", "D", "E", "F"]; do graph.each_node |idx, node| { assert_eq!(&expected[*idx], graph.node_data(idx)); assert_eq!(expected[*idx], node.data); true }; } #[test] fn each_edge() { let graph = create_graph(); let expected = ["AB", "BC", "BD", "DE", "EC", "FB"]; do graph.each_edge |idx, edge| { assert_eq!(&expected[*idx], graph.edge_data(idx)); assert_eq!(expected[*idx], edge.data); true }; } fn test_adjacent_edges(graph: &Graph, start_index: NodeIndex, start_data: N, expected_incoming: &[(E,N)], expected_outgoing: &[(E,N)]) { assert_eq!(graph.node_data(start_index), &start_data); let mut counter = 0; do graph.each_incoming_edge(start_index) |edge_index, edge| { assert_eq!(graph.edge_data(edge_index), &edge.data); assert!(counter < expected_incoming.len()); debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}", counter, expected_incoming[counter], edge_index, edge); match expected_incoming[counter] { (ref e, ref n) => { assert_eq!(e, &edge.data); assert_eq!(n, graph.node_data(edge.source)); assert_eq!(start_index, edge.target); } } counter += 1; true }; assert_eq!(counter, expected_incoming.len()); let mut counter = 0; do graph.each_outgoing_edge(start_index) |edge_index, edge| { assert_eq!(graph.edge_data(edge_index), &edge.data); assert!(counter < expected_outgoing.len()); debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}", counter, expected_outgoing[counter], edge_index, edge); match expected_outgoing[counter] { (ref e, ref n) => { assert_eq!(e, &edge.data); assert_eq!(start_index, edge.source); assert_eq!(n, graph.node_data(edge.target)); } } counter += 1; true }; assert_eq!(counter, expected_outgoing.len()); } #[test] fn each_adjacent_from_a() { let graph = create_graph(); test_adjacent_edges(&graph, NodeIndex(0), "A", [], [("AB", "B")]); } #[test] fn each_adjacent_from_b() { let graph = create_graph(); test_adjacent_edges(&graph, NodeIndex(1), "B", [("FB", "F"), ("AB", "A"),], [("BD", "D"), ("BC", "C"),]); } #[test] fn each_adjacent_from_c() { let graph = create_graph(); test_adjacent_edges(&graph, NodeIndex(2), "C", [("EC", "E"), ("BC", "B")], []); } #[test] fn each_adjacent_from_d() { let graph = create_graph(); test_adjacent_edges(&graph, NodeIndex(3), "D", [("BD", "B")], [("DE", "E")]); } }