// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] // FIXME: remove this after snapshot, and Results are handled #![allow(unused_must_use)] use rustc::front::map as ast_map; use rustc::session::Session; use rustc_front::hir; use rustc_front::fold; use rustc_front::fold::Folder; use common as c; use cstore; use decoder; use encoder as e; use tydecode; use tyencode; use middle::cstore::{InlinedItem, InlinedItemRef}; use middle::ty::adjustment; use middle::ty::cast; use middle::const_qualif::ConstQualif; use middle::def::{self, Def}; use middle::def_id::DefId; use middle::region; use middle::subst; use middle::ty::{self, Ty}; use syntax::{ast, ast_util, codemap}; use syntax::ast::NodeIdAssigner; use syntax::ptr::P; use std::cell::Cell; use std::io::SeekFrom; use std::io::prelude::*; use std::fmt::Debug; use rbml::reader; use rbml::writer::Encoder; use rbml; use serialize; use serialize::{Decodable, Decoder, DecoderHelpers, Encodable}; use serialize::EncoderHelpers; #[cfg(test)] use std::io::Cursor; #[cfg(test)] use syntax::parse; #[cfg(test)] use syntax::ast::NodeId; #[cfg(test)] use rustc_front::print::pprust; #[cfg(test)] use rustc_front::lowering::{lower_item, LoweringContext}; struct DecodeContext<'a, 'b, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, cdata: &'b cstore::crate_metadata, from_id_range: ast_util::IdRange, to_id_range: ast_util::IdRange, // Cache the last used filemap for translating spans as an optimization. last_filemap_index: Cell, } trait tr { fn tr(&self, dcx: &DecodeContext) -> Self; } // ______________________________________________________________________ // Top-level methods. pub fn encode_inlined_item(ecx: &e::EncodeContext, rbml_w: &mut Encoder, ii: InlinedItemRef) { let id = match ii { InlinedItemRef::Item(i) => i.id, InlinedItemRef::Foreign(i) => i.id, InlinedItemRef::TraitItem(_, ti) => ti.id, InlinedItemRef::ImplItem(_, ii) => ii.id, }; debug!("> Encoding inlined item: {} ({:?})", ecx.tcx.map.path_to_string(id), rbml_w.writer.seek(SeekFrom::Current(0))); // Folding could be avoided with a smarter encoder. let ii = simplify_ast(ii); let id_range = inlined_item_id_range(&ii); rbml_w.start_tag(c::tag_ast as usize); id_range.encode(rbml_w); encode_ast(rbml_w, &ii); encode_side_tables_for_ii(ecx, rbml_w, &ii); rbml_w.end_tag(); debug!("< Encoded inlined fn: {} ({:?})", ecx.tcx.map.path_to_string(id), rbml_w.writer.seek(SeekFrom::Current(0))); } impl<'a, 'b, 'c, 'tcx> ast_map::FoldOps for &'a DecodeContext<'b, 'c, 'tcx> { fn new_id(&self, id: ast::NodeId) -> ast::NodeId { if id == ast::DUMMY_NODE_ID { // Used by ast_map to map the NodeInlinedParent. self.tcx.sess.next_node_id() } else { self.tr_id(id) } } fn new_def_id(&self, def_id: DefId) -> DefId { self.tr_def_id(def_id) } fn new_span(&self, span: codemap::Span) -> codemap::Span { self.tr_span(span) } } /// Decodes an item from its AST in the cdata's metadata and adds it to the /// ast-map. pub fn decode_inlined_item<'tcx>(cdata: &cstore::crate_metadata, tcx: &ty::ctxt<'tcx>, parent_path: Vec, parent_def_path: ast_map::DefPath, par_doc: rbml::Doc, orig_did: DefId) -> Result<&'tcx InlinedItem, (Vec, ast_map::DefPath)> { match par_doc.opt_child(c::tag_ast) { None => Err((parent_path, parent_def_path)), Some(ast_doc) => { let mut path_as_str = None; debug!("> Decoding inlined fn: {:?}::?", { // Do an Option dance to use the path after it is moved below. let s = ast_map::path_to_string(parent_path.iter().cloned()); path_as_str = Some(s); path_as_str.as_ref().map(|x| &x[..]) }); let mut ast_dsr = reader::Decoder::new(ast_doc); let from_id_range = Decodable::decode(&mut ast_dsr).unwrap(); let to_id_range = reserve_id_range(&tcx.sess, from_id_range); let dcx = &DecodeContext { cdata: cdata, tcx: tcx, from_id_range: from_id_range, to_id_range: to_id_range, last_filemap_index: Cell::new(0) }; let raw_ii = decode_ast(ast_doc); let ii = ast_map::map_decoded_item(&dcx.tcx.map, parent_path, parent_def_path, raw_ii, dcx); let name = match *ii { InlinedItem::Item(ref i) => i.name, InlinedItem::Foreign(ref i) => i.name, InlinedItem::TraitItem(_, ref ti) => ti.name, InlinedItem::ImplItem(_, ref ii) => ii.name }; debug!("Fn named: {}", name); debug!("< Decoded inlined fn: {}::{}", path_as_str.unwrap(), name); region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, ii); decode_side_tables(dcx, ast_doc); copy_item_types(dcx, ii, orig_did); match *ii { InlinedItem::Item(ref i) => { debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<", ::rustc_front::print::pprust::item_to_string(&i)); } _ => { } } Ok(ii) } } } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST fn reserve_id_range(sess: &Session, from_id_range: ast_util::IdRange) -> ast_util::IdRange { // Handle the case of an empty range: if from_id_range.empty() { return from_id_range; } let cnt = from_id_range.max - from_id_range.min; let to_id_min = sess.reserve_node_ids(cnt); let to_id_max = to_id_min + cnt; ast_util::IdRange { min: to_id_min, max: to_id_max } } impl<'a, 'b, 'tcx> DecodeContext<'a, 'b, 'tcx> { /// Translates an internal id, meaning a node id that is known to refer to some part of the /// item currently being inlined, such as a local variable or argument. All naked node-ids /// that appear in types have this property, since if something might refer to an external item /// we would use a def-id to allow for the possibility that the item resides in another crate. pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId { // from_id_range should be non-empty assert!(!self.from_id_range.empty()); // Use wrapping arithmetic because otherwise it introduces control flow. // Maybe we should just have the control flow? -- aatch (id.wrapping_sub(self.from_id_range.min).wrapping_add(self.to_id_range.min)) } /// Translates an EXTERNAL def-id, converting the crate number from the one used in the encoded /// data to the current crate numbers.. By external, I mean that it be translated to a /// reference to the item in its original crate, as opposed to being translated to a reference /// to the inlined version of the item. This is typically, but not always, what you want, /// because most def-ids refer to external things like types or other fns that may or may not /// be inlined. Note that even when the inlined function is referencing itself recursively, we /// would want `tr_def_id` for that reference--- conceptually the function calls the original, /// non-inlined version, and trans deals with linking that recursive call to the inlined copy. pub fn tr_def_id(&self, did: DefId) -> DefId { decoder::translate_def_id(self.cdata, did) } /// Translates a `Span` from an extern crate to the corresponding `Span` /// within the local crate's codemap. pub fn tr_span(&self, span: codemap::Span) -> codemap::Span { decoder::translate_span(self.cdata, self.tcx.sess.codemap(), &self.last_filemap_index, span) } } impl tr for DefId { fn tr(&self, dcx: &DecodeContext) -> DefId { dcx.tr_def_id(*self) } } impl tr for Option { fn tr(&self, dcx: &DecodeContext) -> Option { self.map(|d| dcx.tr_def_id(d)) } } impl tr for codemap::Span { fn tr(&self, dcx: &DecodeContext) -> codemap::Span { dcx.tr_span(*self) } } trait def_id_encoder_helpers { fn emit_def_id(&mut self, did: DefId); } impl def_id_encoder_helpers for S where ::Error: Debug { fn emit_def_id(&mut self, did: DefId) { did.encode(self).unwrap() } } trait def_id_decoder_helpers { fn read_def_id(&mut self, dcx: &DecodeContext) -> DefId; fn read_def_id_nodcx(&mut self, cdata: &cstore::crate_metadata) -> DefId; } impl def_id_decoder_helpers for D where ::Error: Debug { fn read_def_id(&mut self, dcx: &DecodeContext) -> DefId { let did: DefId = Decodable::decode(self).unwrap(); did.tr(dcx) } fn read_def_id_nodcx(&mut self, cdata: &cstore::crate_metadata) -> DefId { let did: DefId = Decodable::decode(self).unwrap(); decoder::translate_def_id(cdata, did) } } // ______________________________________________________________________ // Encoding and decoding the AST itself // // When decoding, we have to renumber the AST so that the node ids that // appear within are disjoint from the node ids in our existing ASTs. // We also have to adjust the spans: for now we just insert a dummy span, // but eventually we should add entries to the local codemap as required. fn encode_ast(rbml_w: &mut Encoder, item: &InlinedItem) { rbml_w.start_tag(c::tag_tree as usize); rbml_w.emit_opaque(|this| item.encode(this)); rbml_w.end_tag(); } struct NestedItemsDropper; impl Folder for NestedItemsDropper { fn fold_block(&mut self, blk: P) -> P { blk.and_then(|hir::Block {id, stmts, expr, rules, span, ..}| { let stmts_sans_items = stmts.into_iter().filter_map(|stmt| { let use_stmt = match stmt.node { hir::StmtExpr(_, _) | hir::StmtSemi(_, _) => true, hir::StmtDecl(ref decl, _) => { match decl.node { hir::DeclLocal(_) => true, hir::DeclItem(_) => false, } } }; if use_stmt { Some(stmt) } else { None } }).collect(); let blk_sans_items = P(hir::Block { stmts: stmts_sans_items, expr: expr, id: id, rules: rules, span: span, }); fold::noop_fold_block(blk_sans_items, self) }) } } // Produces a simplified copy of the AST which does not include things // that we do not need to or do not want to export. For example, we // do not include any nested items: if these nested items are to be // inlined, their AST will be exported separately (this only makes // sense because, in Rust, nested items are independent except for // their visibility). // // As it happens, trans relies on the fact that we do not export // nested items, as otherwise it would get confused when translating // inlined items. fn simplify_ast(ii: InlinedItemRef) -> InlinedItem { let mut fld = NestedItemsDropper; match ii { // HACK we're not dropping items. InlinedItemRef::Item(i) => { InlinedItem::Item(P(fold::noop_fold_item(i.clone(), &mut fld))) } InlinedItemRef::TraitItem(d, ti) => { InlinedItem::TraitItem(d, P(fold::noop_fold_trait_item(ti.clone(), &mut fld))) } InlinedItemRef::ImplItem(d, ii) => { InlinedItem::ImplItem(d, P(fold::noop_fold_impl_item(ii.clone(), &mut fld))) } InlinedItemRef::Foreign(i) => { InlinedItem::Foreign(P(fold::noop_fold_foreign_item(i.clone(), &mut fld))) } } } fn decode_ast(par_doc: rbml::Doc) -> InlinedItem { let chi_doc = par_doc.get(c::tag_tree as usize); let mut rbml_r = reader::Decoder::new(chi_doc); rbml_r.read_opaque(|decoder, _| Decodable::decode(decoder)).unwrap() } // ______________________________________________________________________ // Encoding and decoding of ast::def fn decode_def(dcx: &DecodeContext, dsr: &mut reader::Decoder) -> Def { let def: Def = Decodable::decode(dsr).unwrap(); def.tr(dcx) } impl tr for Def { fn tr(&self, dcx: &DecodeContext) -> Def { match *self { Def::Fn(did) => Def::Fn(did.tr(dcx)), Def::Method(did) => Def::Method(did.tr(dcx)), Def::SelfTy(opt_did, impl_ids) => { Def::SelfTy(opt_did.map(|did| did.tr(dcx)), impl_ids.map(|(nid1, nid2)| { (dcx.tr_id(nid1), dcx.tr_id(nid2)) })) } Def::Mod(did) => { Def::Mod(did.tr(dcx)) } Def::ForeignMod(did) => { Def::ForeignMod(did.tr(dcx)) } Def::Static(did, m) => { Def::Static(did.tr(dcx), m) } Def::Const(did) => { Def::Const(did.tr(dcx)) } Def::AssociatedConst(did) => Def::AssociatedConst(did.tr(dcx)), Def::Local(_, nid) => { let nid = dcx.tr_id(nid); let did = dcx.tcx.map.local_def_id(nid); Def::Local(did, nid) } Def::Variant(e_did, v_did) => Def::Variant(e_did.tr(dcx), v_did.tr(dcx)), Def::Trait(did) => Def::Trait(did.tr(dcx)), Def::Enum(did) => Def::Enum(did.tr(dcx)), Def::TyAlias(did) => Def::TyAlias(did.tr(dcx)), Def::AssociatedTy(trait_did, did) => Def::AssociatedTy(trait_did.tr(dcx), did.tr(dcx)), Def::PrimTy(p) => Def::PrimTy(p), Def::TyParam(s, index, def_id, n) => Def::TyParam(s, index, def_id.tr(dcx), n), Def::Upvar(_, nid1, index, nid2) => { let nid1 = dcx.tr_id(nid1); let nid2 = dcx.tr_id(nid2); let did1 = dcx.tcx.map.local_def_id(nid1); Def::Upvar(did1, nid1, index, nid2) } Def::Struct(did) => Def::Struct(did.tr(dcx)), Def::Label(nid) => Def::Label(dcx.tr_id(nid)), Def::Err => Def::Err, } } } // ______________________________________________________________________ // Encoding and decoding of freevar information fn encode_freevar_entry(rbml_w: &mut Encoder, fv: &ty::Freevar) { (*fv).encode(rbml_w).unwrap(); } trait rbml_decoder_helper { fn read_freevar_entry(&mut self, dcx: &DecodeContext) -> ty::Freevar; fn read_capture_mode(&mut self) -> hir::CaptureClause; } impl<'a> rbml_decoder_helper for reader::Decoder<'a> { fn read_freevar_entry(&mut self, dcx: &DecodeContext) -> ty::Freevar { let fv: ty::Freevar = Decodable::decode(self).unwrap(); fv.tr(dcx) } fn read_capture_mode(&mut self) -> hir::CaptureClause { let cm: hir::CaptureClause = Decodable::decode(self).unwrap(); cm } } impl tr for ty::Freevar { fn tr(&self, dcx: &DecodeContext) -> ty::Freevar { ty::Freevar { def: self.def.tr(dcx), span: self.span.tr(dcx), } } } // ______________________________________________________________________ // Encoding and decoding of MethodCallee trait read_method_callee_helper<'tcx> { fn read_method_callee<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> (u32, ty::MethodCallee<'tcx>); } fn encode_method_callee<'a, 'tcx>(ecx: &e::EncodeContext<'a, 'tcx>, rbml_w: &mut Encoder, autoderef: u32, method: &ty::MethodCallee<'tcx>) { use serialize::Encoder; rbml_w.emit_struct("MethodCallee", 4, |rbml_w| { rbml_w.emit_struct_field("autoderef", 0, |rbml_w| { autoderef.encode(rbml_w) }); rbml_w.emit_struct_field("def_id", 1, |rbml_w| { Ok(rbml_w.emit_def_id(method.def_id)) }); rbml_w.emit_struct_field("ty", 2, |rbml_w| { Ok(rbml_w.emit_ty(ecx, method.ty)) }); rbml_w.emit_struct_field("substs", 3, |rbml_w| { Ok(rbml_w.emit_substs(ecx, &method.substs)) }) }).unwrap(); } impl<'a, 'tcx> read_method_callee_helper<'tcx> for reader::Decoder<'a> { fn read_method_callee<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> (u32, ty::MethodCallee<'tcx>) { self.read_struct("MethodCallee", 4, |this| { let autoderef = this.read_struct_field("autoderef", 0, Decodable::decode).unwrap(); Ok((autoderef, ty::MethodCallee { def_id: this.read_struct_field("def_id", 1, |this| { Ok(this.read_def_id(dcx)) }).unwrap(), ty: this.read_struct_field("ty", 2, |this| { Ok(this.read_ty(dcx)) }).unwrap(), substs: this.read_struct_field("substs", 3, |this| { Ok(dcx.tcx.mk_substs(this.read_substs(dcx))) }).unwrap() })) }).unwrap() } } pub fn encode_cast_kind(ebml_w: &mut Encoder, kind: cast::CastKind) { kind.encode(ebml_w).unwrap(); } // ______________________________________________________________________ // Encoding and decoding the side tables trait rbml_writer_helpers<'tcx> { fn emit_region(&mut self, ecx: &e::EncodeContext, r: ty::Region); fn emit_ty<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: Ty<'tcx>); fn emit_tys<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, tys: &[Ty<'tcx>]); fn emit_predicate<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, predicate: &ty::Predicate<'tcx>); fn emit_trait_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: &ty::TraitRef<'tcx>); fn emit_substs<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, substs: &subst::Substs<'tcx>); fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>, bounds: &ty::ExistentialBounds<'tcx>); fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds); fn emit_upvar_capture(&mut self, ecx: &e::EncodeContext, capture: &ty::UpvarCapture); fn emit_auto_adjustment<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, adj: &adjustment::AutoAdjustment<'tcx>); fn emit_autoref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, autoref: &adjustment::AutoRef<'tcx>); fn emit_auto_deref_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, auto_deref_ref: &adjustment::AutoDerefRef<'tcx>); } impl<'a, 'tcx> rbml_writer_helpers<'tcx> for Encoder<'a> { fn emit_region(&mut self, ecx: &e::EncodeContext, r: ty::Region) { self.emit_opaque(|this| Ok(tyencode::enc_region(&mut this.cursor, &ecx.ty_str_ctxt(), r))); } fn emit_ty<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, ty: Ty<'tcx>) { self.emit_opaque(|this| Ok(tyencode::enc_ty(&mut this.cursor, &ecx.ty_str_ctxt(), ty))); } fn emit_tys<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, tys: &[Ty<'tcx>]) { self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty))); } fn emit_trait_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, trait_ref: &ty::TraitRef<'tcx>) { self.emit_opaque(|this| Ok(tyencode::enc_trait_ref(&mut this.cursor, &ecx.ty_str_ctxt(), *trait_ref))); } fn emit_predicate<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, predicate: &ty::Predicate<'tcx>) { self.emit_opaque(|this| { Ok(tyencode::enc_predicate(&mut this.cursor, &ecx.ty_str_ctxt(), predicate)) }); } fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>, bounds: &ty::ExistentialBounds<'tcx>) { self.emit_opaque(|this| Ok(tyencode::enc_existential_bounds(&mut this.cursor, &ecx.ty_str_ctxt(), bounds))); } fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds) { self.emit_opaque(|this| Ok(tyencode::enc_builtin_bounds(&mut this.cursor, &ecx.ty_str_ctxt(), bounds))); } fn emit_upvar_capture(&mut self, ecx: &e::EncodeContext, capture: &ty::UpvarCapture) { use serialize::Encoder; self.emit_enum("UpvarCapture", |this| { match *capture { ty::UpvarCapture::ByValue => { this.emit_enum_variant("ByValue", 1, 0, |_| Ok(())) } ty::UpvarCapture::ByRef(ty::UpvarBorrow { kind, region }) => { this.emit_enum_variant("ByRef", 2, 0, |this| { this.emit_enum_variant_arg(0, |this| kind.encode(this)); this.emit_enum_variant_arg(1, |this| Ok(this.emit_region(ecx, region))) }) } } }).unwrap() } fn emit_substs<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, substs: &subst::Substs<'tcx>) { self.emit_opaque(|this| Ok(tyencode::enc_substs(&mut this.cursor, &ecx.ty_str_ctxt(), substs))); } fn emit_auto_adjustment<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, adj: &adjustment::AutoAdjustment<'tcx>) { use serialize::Encoder; self.emit_enum("AutoAdjustment", |this| { match *adj { adjustment::AdjustReifyFnPointer => { this.emit_enum_variant("AdjustReifyFnPointer", 1, 0, |_| Ok(())) } adjustment::AdjustUnsafeFnPointer => { this.emit_enum_variant("AdjustUnsafeFnPointer", 2, 0, |_| { Ok(()) }) } adjustment::AdjustMutToConstPointer => { this.emit_enum_variant("AdjustMutToConstPointer", 3, 0, |_| { Ok(()) }) } adjustment::AdjustDerefRef(ref auto_deref_ref) => { this.emit_enum_variant("AdjustDerefRef", 4, 2, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_auto_deref_ref(ecx, auto_deref_ref))) }) } } }); } fn emit_autoref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, autoref: &adjustment::AutoRef<'tcx>) { use serialize::Encoder; self.emit_enum("AutoRef", |this| { match autoref { &adjustment::AutoPtr(r, m) => { this.emit_enum_variant("AutoPtr", 0, 2, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_region(ecx, *r))); this.emit_enum_variant_arg(1, |this| m.encode(this)) }) } &adjustment::AutoUnsafe(m) => { this.emit_enum_variant("AutoUnsafe", 1, 1, |this| { this.emit_enum_variant_arg(0, |this| m.encode(this)) }) } } }); } fn emit_auto_deref_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, auto_deref_ref: &adjustment::AutoDerefRef<'tcx>) { use serialize::Encoder; self.emit_struct("AutoDerefRef", 2, |this| { this.emit_struct_field("autoderefs", 0, |this| auto_deref_ref.autoderefs.encode(this)); this.emit_struct_field("autoref", 1, |this| { this.emit_option(|this| { match auto_deref_ref.autoref { None => this.emit_option_none(), Some(ref a) => this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a))), } }) }); this.emit_struct_field("unsize", 2, |this| { this.emit_option(|this| { match auto_deref_ref.unsize { None => this.emit_option_none(), Some(target) => this.emit_option_some(|this| { Ok(this.emit_ty(ecx, target)) }) } }) }) }); } } trait write_tag_and_id { fn tag(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Self); fn id(&mut self, id: ast::NodeId); } impl<'a> write_tag_and_id for Encoder<'a> { fn tag(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Encoder<'a>), { self.start_tag(tag_id as usize); f(self); self.end_tag(); } fn id(&mut self, id: ast::NodeId) { id.encode(self).unwrap(); } } struct SideTableEncodingIdVisitor<'a, 'b:'a, 'c:'a, 'tcx:'c> { ecx: &'a e::EncodeContext<'c, 'tcx>, rbml_w: &'a mut Encoder<'b>, } impl<'a, 'b, 'c, 'tcx> ast_util::IdVisitingOperation for SideTableEncodingIdVisitor<'a, 'b, 'c, 'tcx> { fn visit_id(&mut self, id: ast::NodeId) { encode_side_tables_for_id(self.ecx, self.rbml_w, id) } } fn encode_side_tables_for_ii(ecx: &e::EncodeContext, rbml_w: &mut Encoder, ii: &InlinedItem) { rbml_w.start_tag(c::tag_table as usize); ii.visit_ids(&mut SideTableEncodingIdVisitor { ecx: ecx, rbml_w: rbml_w }); rbml_w.end_tag(); } fn encode_side_tables_for_id(ecx: &e::EncodeContext, rbml_w: &mut Encoder, id: ast::NodeId) { let tcx = ecx.tcx; debug!("Encoding side tables for id {}", id); if let Some(def) = tcx.def_map.borrow().get(&id).map(|d| d.full_def()) { rbml_w.tag(c::tag_table_def, |rbml_w| { rbml_w.id(id); def.encode(rbml_w).unwrap(); }) } if let Some(ty) = tcx.node_types().get(&id) { rbml_w.tag(c::tag_table_node_type, |rbml_w| { rbml_w.id(id); rbml_w.emit_ty(ecx, *ty); }) } if let Some(item_substs) = tcx.tables.borrow().item_substs.get(&id) { rbml_w.tag(c::tag_table_item_subst, |rbml_w| { rbml_w.id(id); rbml_w.emit_substs(ecx, &item_substs.substs); }) } if let Some(fv) = tcx.freevars.borrow().get(&id) { rbml_w.tag(c::tag_table_freevars, |rbml_w| { rbml_w.id(id); rbml_w.emit_from_vec(fv, |rbml_w, fv_entry| { Ok(encode_freevar_entry(rbml_w, fv_entry)) }); }); for freevar in fv { rbml_w.tag(c::tag_table_upvar_capture_map, |rbml_w| { rbml_w.id(id); let var_id = freevar.def.var_id(); let upvar_id = ty::UpvarId { var_id: var_id, closure_expr_id: id }; let upvar_capture = tcx.tables .borrow() .upvar_capture_map .get(&upvar_id) .unwrap() .clone(); var_id.encode(rbml_w); rbml_w.emit_upvar_capture(ecx, &upvar_capture); }) } } let method_call = ty::MethodCall::expr(id); if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); encode_method_callee(ecx, rbml_w, method_call.autoderef, method) }) } if let Some(adjustment) = tcx.tables.borrow().adjustments.get(&id) { match *adjustment { adjustment::AdjustDerefRef(ref adj) => { for autoderef in 0..adj.autoderefs { let method_call = ty::MethodCall::autoderef(id, autoderef as u32); if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); encode_method_callee(ecx, rbml_w, method_call.autoderef, method) }) } } } _ => {} } rbml_w.tag(c::tag_table_adjustments, |rbml_w| { rbml_w.id(id); rbml_w.emit_auto_adjustment(ecx, adjustment); }) } if let Some(cast_kind) = tcx.cast_kinds.borrow().get(&id) { rbml_w.tag(c::tag_table_cast_kinds, |rbml_w| { rbml_w.id(id); encode_cast_kind(rbml_w, *cast_kind) }) } if let Some(qualif) = tcx.const_qualif_map.borrow().get(&id) { rbml_w.tag(c::tag_table_const_qualif, |rbml_w| { rbml_w.id(id); qualif.encode(rbml_w).unwrap() }) } } trait doc_decoder_helpers: Sized { fn as_int(&self) -> isize; fn opt_child(&self, tag: c::astencode_tag) -> Option; } impl<'a> doc_decoder_helpers for rbml::Doc<'a> { fn as_int(&self) -> isize { reader::doc_as_u64(*self) as isize } fn opt_child(&self, tag: c::astencode_tag) -> Option> { reader::maybe_get_doc(*self, tag as usize) } } trait rbml_decoder_decoder_helpers<'tcx> { fn read_ty_encoded<'a, 'b, F, R>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>, f: F) -> R where F: for<'x> FnOnce(&mut tydecode::TyDecoder<'x, 'tcx>) -> R; fn read_region(&mut self, dcx: &DecodeContext) -> ty::Region; fn read_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Ty<'tcx>; fn read_tys<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Vec>; fn read_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::TraitRef<'tcx>; fn read_poly_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::PolyTraitRef<'tcx>; fn read_predicate<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::Predicate<'tcx>; fn read_existential_bounds<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> ty::ExistentialBounds<'tcx>; fn read_substs<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> subst::Substs<'tcx>; fn read_upvar_capture(&mut self, dcx: &DecodeContext) -> ty::UpvarCapture; fn read_auto_adjustment<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> adjustment::AutoAdjustment<'tcx>; fn read_cast_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> cast::CastKind; fn read_auto_deref_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> adjustment::AutoDerefRef<'tcx>; fn read_autoref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> adjustment::AutoRef<'tcx>; // Versions of the type reading functions that don't need the full // DecodeContext. fn read_ty_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx>; fn read_tys_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Vec>; fn read_substs_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> subst::Substs<'tcx>; } impl<'a, 'tcx> rbml_decoder_decoder_helpers<'tcx> for reader::Decoder<'a> { fn read_ty_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Ty<'tcx> { self.read_opaque(|_, doc| { Ok( tydecode::TyDecoder::with_doc(tcx, cdata.cnum, doc, &mut |id| decoder::translate_def_id(cdata, id)) .parse_ty()) }).unwrap() } fn read_tys_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> Vec> { self.read_to_vec(|this| Ok(this.read_ty_nodcx(tcx, cdata)) ) .unwrap() .into_iter() .collect() } fn read_substs_nodcx(&mut self, tcx: &ty::ctxt<'tcx>, cdata: &cstore::crate_metadata) -> subst::Substs<'tcx> { self.read_opaque(|_, doc| { Ok( tydecode::TyDecoder::with_doc(tcx, cdata.cnum, doc, &mut |id| decoder::translate_def_id(cdata, id)) .parse_substs()) }).unwrap() } fn read_ty_encoded<'b, 'c, F, R>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>, op: F) -> R where F: for<'x> FnOnce(&mut tydecode::TyDecoder<'x,'tcx>) -> R { return self.read_opaque(|_, doc| { debug!("read_ty_encoded({})", type_string(doc)); Ok(op( &mut tydecode::TyDecoder::with_doc( dcx.tcx, dcx.cdata.cnum, doc, &mut |d| convert_def_id(dcx, d)))) }).unwrap(); fn type_string(doc: rbml::Doc) -> String { let mut str = String::new(); for i in doc.start..doc.end { str.push(doc.data[i] as char); } str } } fn read_region(&mut self, dcx: &DecodeContext) -> ty::Region { // Note: regions types embed local node ids. In principle, we // should translate these node ids into the new decode // context. However, we do not bother, because region types // are not used during trans. This also applies to read_ty. return self.read_ty_encoded(dcx, |decoder| decoder.parse_region()); } fn read_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Ty<'tcx> { return self.read_ty_encoded(dcx, |decoder| decoder.parse_ty()); } fn read_tys<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Vec> { self.read_to_vec(|this| Ok(this.read_ty(dcx))).unwrap().into_iter().collect() } fn read_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::TraitRef<'tcx> { self.read_ty_encoded(dcx, |decoder| decoder.parse_trait_ref()) } fn read_poly_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::PolyTraitRef<'tcx> { ty::Binder(self.read_ty_encoded(dcx, |decoder| decoder.parse_trait_ref())) } fn read_predicate<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::Predicate<'tcx> { self.read_ty_encoded(dcx, |decoder| decoder.parse_predicate()) } fn read_existential_bounds<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> ty::ExistentialBounds<'tcx> { self.read_ty_encoded(dcx, |decoder| decoder.parse_existential_bounds()) } fn read_substs<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> subst::Substs<'tcx> { self.read_opaque(|_, doc| { Ok(tydecode::TyDecoder::with_doc(dcx.tcx, dcx.cdata.cnum, doc, &mut |d| convert_def_id(dcx, d)) .parse_substs()) }).unwrap() } fn read_upvar_capture(&mut self, dcx: &DecodeContext) -> ty::UpvarCapture { self.read_enum("UpvarCapture", |this| { let variants = ["ByValue", "ByRef"]; this.read_enum_variant(&variants, |this, i| { Ok(match i { 1 => ty::UpvarCapture::ByValue, 2 => ty::UpvarCapture::ByRef(ty::UpvarBorrow { kind: this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(), region: this.read_enum_variant_arg(1, |this| Ok(this.read_region(dcx))).unwrap() }), _ => panic!("bad enum variant for ty::UpvarCapture") }) }) }).unwrap() } fn read_auto_adjustment<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> adjustment::AutoAdjustment<'tcx> { self.read_enum("AutoAdjustment", |this| { let variants = ["AdjustReifyFnPointer", "AdjustUnsafeFnPointer", "AdjustMutToConstPointer", "AdjustDerefRef"]; this.read_enum_variant(&variants, |this, i| { Ok(match i { 1 => adjustment::AdjustReifyFnPointer, 2 => adjustment::AdjustUnsafeFnPointer, 3 => adjustment::AdjustMutToConstPointer, 4 => { let auto_deref_ref: adjustment::AutoDerefRef = this.read_enum_variant_arg(0, |this| Ok(this.read_auto_deref_ref(dcx))).unwrap(); adjustment::AdjustDerefRef(auto_deref_ref) } _ => panic!("bad enum variant for adjustment::AutoAdjustment") }) }) }).unwrap() } fn read_auto_deref_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> adjustment::AutoDerefRef<'tcx> { self.read_struct("AutoDerefRef", 2, |this| { Ok(adjustment::AutoDerefRef { autoderefs: this.read_struct_field("autoderefs", 0, |this| { Decodable::decode(this) }).unwrap(), autoref: this.read_struct_field("autoref", 1, |this| { this.read_option(|this, b| { if b { Ok(Some(this.read_autoref(dcx))) } else { Ok(None) } }) }).unwrap(), unsize: this.read_struct_field("unsize", 2, |this| { this.read_option(|this, b| { if b { Ok(Some(this.read_ty(dcx))) } else { Ok(None) } }) }).unwrap(), }) }).unwrap() } fn read_autoref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> adjustment::AutoRef<'tcx> { self.read_enum("AutoRef", |this| { let variants = ["AutoPtr", "AutoUnsafe"]; this.read_enum_variant(&variants, |this, i| { Ok(match i { 0 => { let r: ty::Region = this.read_enum_variant_arg(0, |this| { Ok(this.read_region(dcx)) }).unwrap(); let m: hir::Mutability = this.read_enum_variant_arg(1, |this| { Decodable::decode(this) }).unwrap(); adjustment::AutoPtr(dcx.tcx.mk_region(r), m) } 1 => { let m: hir::Mutability = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); adjustment::AutoUnsafe(m) } _ => panic!("bad enum variant for adjustment::AutoRef") }) }) }).unwrap() } fn read_cast_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>) -> cast::CastKind { Decodable::decode(self).unwrap() } } // Converts a def-id that appears in a type. The correct // translation will depend on what kind of def-id this is. // This is a subtle point: type definitions are not // inlined into the current crate, so if the def-id names // a nominal type or type alias, then it should be // translated to refer to the source crate. // // However, *type parameters* are cloned along with the function // they are attached to. So we should translate those def-ids // to refer to the new, cloned copy of the type parameter. // We only see references to free type parameters in the body of // an inlined function. In such cases, we need the def-id to // be a local id so that the TypeContents code is able to lookup // the relevant info in the ty_param_defs table. // // *Region parameters*, unfortunately, are another kettle of fish. // In such cases, def_id's can appear in types to distinguish // shadowed bound regions and so forth. It doesn't actually // matter so much what we do to these, since regions are erased // at trans time, but it's good to keep them consistent just in // case. We translate them with `tr_def_id()` which will map // the crate numbers back to the original source crate. // // Scopes will end up as being totally bogus. This can actually // be fixed though. // // Unboxed closures are cloned along with the function being // inlined, and all side tables use interned node IDs, so we // translate their def IDs accordingly. // // It'd be really nice to refactor the type repr to not include // def-ids so that all these distinctions were unnecessary. fn convert_def_id(dcx: &DecodeContext, did: DefId) -> DefId { let r = dcx.tr_def_id(did); debug!("convert_def_id(did={:?})={:?}", did, r); return r; } fn decode_side_tables(dcx: &DecodeContext, ast_doc: rbml::Doc) { let tbl_doc = ast_doc.get(c::tag_table as usize); for (tag, entry_doc) in reader::docs(tbl_doc) { let mut entry_dsr = reader::Decoder::new(entry_doc); let id0: ast::NodeId = Decodable::decode(&mut entry_dsr).unwrap(); let id = dcx.tr_id(id0); debug!(">> Side table document with tag 0x{:x} \ found for id {} (orig {})", tag, id, id0); let tag = tag as u32; let decoded_tag: Option = c::astencode_tag::from_u32(tag); match decoded_tag { None => { dcx.tcx.sess.bug( &format!("unknown tag found in side tables: {:x}", tag)); } Some(value) => { let val_dsr = &mut entry_dsr; match value { c::tag_table_def => { let def = decode_def(dcx, val_dsr); dcx.tcx.def_map.borrow_mut().insert(id, def::PathResolution { base_def: def, depth: 0 }); } c::tag_table_node_type => { let ty = val_dsr.read_ty(dcx); debug!("inserting ty for node {}: {:?}", id, ty); dcx.tcx.node_type_insert(id, ty); } c::tag_table_item_subst => { let item_substs = ty::ItemSubsts { substs: val_dsr.read_substs(dcx) }; dcx.tcx.tables.borrow_mut().item_substs.insert( id, item_substs); } c::tag_table_freevars => { let fv_info = val_dsr.read_to_vec(|val_dsr| { Ok(val_dsr.read_freevar_entry(dcx)) }).unwrap().into_iter().collect(); dcx.tcx.freevars.borrow_mut().insert(id, fv_info); } c::tag_table_upvar_capture_map => { let var_id: ast::NodeId = Decodable::decode(val_dsr).unwrap(); let upvar_id = ty::UpvarId { var_id: dcx.tr_id(var_id), closure_expr_id: id }; let ub = val_dsr.read_upvar_capture(dcx); dcx.tcx.tables.borrow_mut().upvar_capture_map.insert(upvar_id, ub); } c::tag_table_method_map => { let (autoderef, method) = val_dsr.read_method_callee(dcx); let method_call = ty::MethodCall { expr_id: id, autoderef: autoderef }; dcx.tcx.tables.borrow_mut().method_map.insert(method_call, method); } c::tag_table_adjustments => { let adj = val_dsr.read_auto_adjustment(dcx); dcx.tcx.tables.borrow_mut().adjustments.insert(id, adj); } c::tag_table_cast_kinds => { let cast_kind = val_dsr.read_cast_kind(dcx); dcx.tcx.cast_kinds.borrow_mut().insert(id, cast_kind); } c::tag_table_const_qualif => { let qualif: ConstQualif = Decodable::decode(val_dsr).unwrap(); dcx.tcx.const_qualif_map.borrow_mut().insert(id, qualif); } _ => { dcx.tcx.sess.bug( &format!("unknown tag found in side tables: {:x}", tag)); } } } } debug!(">< Side table doc loaded"); } } // copy the tcache entries from the original item to the new // inlined item fn copy_item_types(dcx: &DecodeContext, ii: &InlinedItem, orig_did: DefId) { fn copy_item_type(dcx: &DecodeContext, inlined_id: ast::NodeId, remote_did: DefId) { let inlined_did = dcx.tcx.map.local_def_id(inlined_id); dcx.tcx.register_item_type(inlined_did, dcx.tcx.lookup_item_type(remote_did)); } // copy the entry for the item itself let item_node_id = match ii { &InlinedItem::Item(ref i) => i.id, &InlinedItem::TraitItem(_, ref ti) => ti.id, &InlinedItem::ImplItem(_, ref ii) => ii.id, &InlinedItem::Foreign(ref fi) => fi.id }; copy_item_type(dcx, item_node_id, orig_did); // copy the entries of inner items if let &InlinedItem::Item(ref item) = ii { match item.node { hir::ItemEnum(ref def, _) => { let orig_def = dcx.tcx.lookup_adt_def(orig_did); for (i_variant, orig_variant) in def.variants.iter().zip(orig_def.variants.iter()) { debug!("astencode: copying variant {:?} => {:?}", orig_variant.did, i_variant.node.data.id()); copy_item_type(dcx, i_variant.node.data.id(), orig_variant.did); } } hir::ItemStruct(ref def, _) => { if !def.is_struct() { let ctor_did = dcx.tcx.lookup_adt_def(orig_did) .struct_variant().did; debug!("astencode: copying ctor {:?} => {:?}", ctor_did, def.id()); copy_item_type(dcx, def.id(), ctor_did); } } _ => {} } } } fn inlined_item_id_range(v: &InlinedItem) -> ast_util::IdRange { let mut visitor = ast_util::IdRangeComputingVisitor::new(); v.visit_ids(&mut visitor); visitor.result() } // ______________________________________________________________________ // Testing of astencode_gen #[cfg(test)] fn encode_item_ast(rbml_w: &mut Encoder, item: &hir::Item) { rbml_w.start_tag(c::tag_tree as usize); (*item).encode(rbml_w); rbml_w.end_tag(); } #[cfg(test)] fn decode_item_ast(par_doc: rbml::Doc) -> hir::Item { let chi_doc = par_doc.get(c::tag_tree as usize); let mut d = reader::Decoder::new(chi_doc); Decodable::decode(&mut d).unwrap() } #[cfg(test)] trait FakeExtCtxt { fn call_site(&self) -> codemap::Span; fn cfg(&self) -> ast::CrateConfig; fn ident_of(&self, st: &str) -> ast::Ident; fn name_of(&self, st: &str) -> ast::Name; fn parse_sess(&self) -> &parse::ParseSess; } #[cfg(test)] impl FakeExtCtxt for parse::ParseSess { fn call_site(&self) -> codemap::Span { codemap::Span { lo: codemap::BytePos(0), hi: codemap::BytePos(0), expn_id: codemap::NO_EXPANSION, } } fn cfg(&self) -> ast::CrateConfig { Vec::new() } fn ident_of(&self, st: &str) -> ast::Ident { parse::token::str_to_ident(st) } fn name_of(&self, st: &str) -> ast::Name { parse::token::intern(st) } fn parse_sess(&self) -> &parse::ParseSess { self } } #[cfg(test)] struct FakeNodeIdAssigner; #[cfg(test)] // It should go without saying that this may give unexpected results. Avoid // lowering anything which needs new nodes. impl NodeIdAssigner for FakeNodeIdAssigner { fn next_node_id(&self) -> NodeId { 0 } fn peek_node_id(&self) -> NodeId { 0 } } #[cfg(test)] fn mk_ctxt() -> parse::ParseSess { parse::ParseSess::new() } #[cfg(test)] fn roundtrip(in_item: hir::Item) { let mut wr = Cursor::new(Vec::new()); encode_item_ast(&mut Encoder::new(&mut wr), &in_item); let rbml_doc = rbml::Doc::new(wr.get_ref()); let out_item = decode_item_ast(rbml_doc); assert!(in_item == out_item); } #[test] fn test_basic() { let cx = mk_ctxt(); let fnia = FakeNodeIdAssigner; let lcx = LoweringContext::new(&fnia, None); roundtrip(lower_item(&lcx, "e_item!(&cx, fn foo() {} ).unwrap())); } #[test] fn test_smalltalk() { let cx = mk_ctxt(); let fnia = FakeNodeIdAssigner; let lcx = LoweringContext::new(&fnia, None); roundtrip(lower_item(&lcx, "e_item!(&cx, fn foo() -> isize { 3 + 4 } // first smalltalk program ever executed. ).unwrap())); } #[test] fn test_more() { let cx = mk_ctxt(); let fnia = FakeNodeIdAssigner; let lcx = LoweringContext::new(&fnia, None); roundtrip(lower_item(&lcx, "e_item!(&cx, fn foo(x: usize, y: usize) -> usize { let z = x + y; return z; } ).unwrap())); } #[test] fn test_simplification() { let cx = mk_ctxt(); let item = quote_item!(&cx, fn new_int_alist() -> alist { fn eq_int(a: isize, b: isize) -> bool { a == b } return alist {eq_fn: eq_int, data: Vec::new()}; } ).unwrap(); let fnia = FakeNodeIdAssigner; let lcx = LoweringContext::new(&fnia, None); let hir_item = lower_item(&lcx, &item); let item_in = InlinedItemRef::Item(&hir_item); let item_out = simplify_ast(item_in); let item_exp = InlinedItem::Item(P(lower_item(&lcx, "e_item!(&cx, fn new_int_alist() -> alist { return alist {eq_fn: eq_int, data: Vec::new()}; } ).unwrap()))); match (item_out, item_exp) { (InlinedItem::Item(item_out), InlinedItem::Item(item_exp)) => { assert!(pprust::item_to_string(&item_out) == pprust::item_to_string(&item_exp)); } _ => panic!() } }