// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, ValueRef}; use rustc::middle::const_val::{ConstEvalErr, ConstVal, ErrKind}; use rustc_const_math::ConstInt::*; use rustc_const_math::ConstFloat::*; use rustc_const_math::{ConstInt, ConstMathErr}; use rustc::hir::def_id::DefId; use rustc::infer::TransNormalize; use rustc::mir; use rustc::mir::tcx::LvalueTy; use rustc::ty::{self, Ty, TyCtxt, TypeFoldable}; use rustc::ty::layout::{self, LayoutTyper}; use rustc::ty::cast::{CastTy, IntTy}; use rustc::ty::subst::{Kind, Substs, Subst}; use rustc_data_structures::indexed_vec::{Idx, IndexVec}; use {abi, adt, base, machine}; use callee; use builder::Builder; use common::{self, CrateContext, const_get_elt, val_ty}; use common::{C_array, C_bool, C_bytes, C_floating_f64, C_integral, C_big_integral}; use common::{C_null, C_struct, C_str_slice, C_undef, C_uint, C_vector, is_undef}; use common::const_to_opt_u128; use consts; use monomorphize; use type_of; use type_::Type; use value::Value; use syntax_pos::Span; use std::fmt; use std::ptr; use super::lvalue::Alignment; use super::operand::{OperandRef, OperandValue}; use super::MirContext; /// A sized constant rvalue. /// The LLVM type might not be the same for a single Rust type, /// e.g. each enum variant would have its own LLVM struct type. #[derive(Copy, Clone)] pub struct Const<'tcx> { pub llval: ValueRef, pub ty: Ty<'tcx> } impl<'tcx> Const<'tcx> { pub fn new(llval: ValueRef, ty: Ty<'tcx>) -> Const<'tcx> { Const { llval: llval, ty: ty } } pub fn from_constint<'a>(ccx: &CrateContext<'a, 'tcx>, ci: &ConstInt) -> Const<'tcx> { let tcx = ccx.tcx(); let (llval, ty) = match *ci { I8(v) => (C_integral(Type::i8(ccx), v as u64, true), tcx.types.i8), I16(v) => (C_integral(Type::i16(ccx), v as u64, true), tcx.types.i16), I32(v) => (C_integral(Type::i32(ccx), v as u64, true), tcx.types.i32), I64(v) => (C_integral(Type::i64(ccx), v as u64, true), tcx.types.i64), I128(v) => (C_big_integral(Type::i128(ccx), v as u128), tcx.types.i128), Isize(v) => { let i = v.as_i64(ccx.tcx().sess.target.int_type); (C_integral(Type::int(ccx), i as u64, true), tcx.types.isize) }, U8(v) => (C_integral(Type::i8(ccx), v as u64, false), tcx.types.u8), U16(v) => (C_integral(Type::i16(ccx), v as u64, false), tcx.types.u16), U32(v) => (C_integral(Type::i32(ccx), v as u64, false), tcx.types.u32), U64(v) => (C_integral(Type::i64(ccx), v, false), tcx.types.u64), U128(v) => (C_big_integral(Type::i128(ccx), v), tcx.types.u128), Usize(v) => { let u = v.as_u64(ccx.tcx().sess.target.uint_type); (C_integral(Type::int(ccx), u, false), tcx.types.usize) }, }; Const { llval: llval, ty: ty } } /// Translate ConstVal into a LLVM constant value. pub fn from_constval<'a>(ccx: &CrateContext<'a, 'tcx>, cv: ConstVal, ty: Ty<'tcx>) -> Const<'tcx> { let llty = type_of::type_of(ccx, ty); let val = match cv { ConstVal::Float(F32(v)) => C_floating_f64(v as f64, llty), ConstVal::Float(F64(v)) => C_floating_f64(v, llty), ConstVal::Bool(v) => C_bool(ccx, v), ConstVal::Integral(ref i) => return Const::from_constint(ccx, i), ConstVal::Str(ref v) => C_str_slice(ccx, v.clone()), ConstVal::ByteStr(ref v) => consts::addr_of(ccx, C_bytes(ccx, v), 1, "byte_str"), ConstVal::Char(c) => C_integral(Type::char(ccx), c as u64, false), ConstVal::Function(..) => C_null(type_of::type_of(ccx, ty)), ConstVal::Variant(_) | ConstVal::Struct(_) | ConstVal::Tuple(_) | ConstVal::Array(..) | ConstVal::Repeat(..) => { bug!("MIR must not use `{:?}` (aggregates are expanded to MIR rvalues)", cv) } }; assert!(!ty.has_erasable_regions()); Const::new(val, ty) } fn get_pair(&self) -> (ValueRef, ValueRef) { (const_get_elt(self.llval, &[0]), const_get_elt(self.llval, &[1])) } fn get_fat_ptr(&self) -> (ValueRef, ValueRef) { assert_eq!(abi::FAT_PTR_ADDR, 0); assert_eq!(abi::FAT_PTR_EXTRA, 1); self.get_pair() } fn as_lvalue(&self) -> ConstLvalue<'tcx> { ConstLvalue { base: Base::Value(self.llval), llextra: ptr::null_mut(), ty: self.ty } } pub fn to_operand<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> OperandRef<'tcx> { let llty = type_of::immediate_type_of(ccx, self.ty); let llvalty = val_ty(self.llval); let val = if llty == llvalty && common::type_is_imm_pair(ccx, self.ty) { let (a, b) = self.get_pair(); OperandValue::Pair(a, b) } else if llty == llvalty && common::type_is_immediate(ccx, self.ty) { // If the types match, we can use the value directly. OperandValue::Immediate(self.llval) } else { // Otherwise, or if the value is not immediate, we create // a constant LLVM global and cast its address if necessary. let align = ccx.align_of(self.ty); let ptr = consts::addr_of(ccx, self.llval, align, "const"); OperandValue::Ref(consts::ptrcast(ptr, llty.ptr_to()), Alignment::AbiAligned) }; OperandRef { val: val, ty: self.ty } } } impl<'tcx> fmt::Debug for Const<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Const({:?}: {:?})", Value(self.llval), self.ty) } } #[derive(Copy, Clone)] enum Base { /// A constant value without an unique address. Value(ValueRef), /// String literal base pointer (cast from array). Str(ValueRef), /// The address of a static. Static(ValueRef) } /// An lvalue as seen from a constant. #[derive(Copy, Clone)] struct ConstLvalue<'tcx> { base: Base, llextra: ValueRef, ty: Ty<'tcx> } impl<'tcx> ConstLvalue<'tcx> { fn to_const(&self, span: Span) -> Const<'tcx> { match self.base { Base::Value(val) => Const::new(val, self.ty), Base::Str(ptr) => { span_bug!(span, "loading from `str` ({:?}) in constant", Value(ptr)) } Base::Static(val) => { span_bug!(span, "loading from `static` ({:?}) in constant", Value(val)) } } } pub fn len<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> ValueRef { match self.ty.sty { ty::TyArray(_, n) => C_uint(ccx, n), ty::TySlice(_) | ty::TyStr => { assert!(self.llextra != ptr::null_mut()); self.llextra } _ => bug!("unexpected type `{}` in ConstLvalue::len", self.ty) } } } /// Machinery for translating a constant's MIR to LLVM values. /// FIXME(eddyb) use miri and lower its allocations to LLVM. struct MirConstContext<'a, 'tcx: 'a> { ccx: &'a CrateContext<'a, 'tcx>, mir: &'a mir::Mir<'tcx>, /// Type parameters for const fn and associated constants. substs: &'tcx Substs<'tcx>, /// Values of locals in a constant or const fn. locals: IndexVec>> } impl<'a, 'tcx> MirConstContext<'a, 'tcx> { fn new(ccx: &'a CrateContext<'a, 'tcx>, mir: &'a mir::Mir<'tcx>, substs: &'tcx Substs<'tcx>, args: IndexVec>) -> MirConstContext<'a, 'tcx> { let mut context = MirConstContext { ccx: ccx, mir: mir, substs: substs, locals: (0..mir.local_decls.len()).map(|_| None).collect(), }; for (i, arg) in args.into_iter().enumerate() { // Locals after local 0 are the function arguments let index = mir::Local::new(i + 1); context.locals[index] = Some(arg); } context } fn trans_def(ccx: &'a CrateContext<'a, 'tcx>, def_id: DefId, substs: &'tcx Substs<'tcx>, args: IndexVec>) -> Result, ConstEvalErr<'tcx>> { let instance = monomorphize::resolve(ccx.shared(), def_id, substs); let mir = ccx.tcx().instance_mir(instance.def); MirConstContext::new(ccx, &mir, instance.substs, args).trans() } fn monomorphize(&self, value: &T) -> T where T: TransNormalize<'tcx> { self.ccx.tcx().trans_apply_param_substs(self.substs, value) } fn trans(&mut self) -> Result, ConstEvalErr<'tcx>> { let tcx = self.ccx.tcx(); let mut bb = mir::START_BLOCK; // Make sure to evaluate all statemenets to // report as many errors as we possibly can. let mut failure = Ok(()); loop { let data = &self.mir[bb]; for statement in &data.statements { let span = statement.source_info.span; match statement.kind { mir::StatementKind::Assign(ref dest, ref rvalue) => { let ty = dest.ty(self.mir, tcx); let ty = self.monomorphize(&ty).to_ty(tcx); match self.const_rvalue(rvalue, ty, span) { Ok(value) => self.store(dest, value, span), Err(err) => if failure.is_ok() { failure = Err(err); } } } mir::StatementKind::StorageLive(_) | mir::StatementKind::StorageDead(_) | mir::StatementKind::Nop => {} mir::StatementKind::InlineAsm { .. } | mir::StatementKind::SetDiscriminant{ .. } => { span_bug!(span, "{:?} should not appear in constants?", statement.kind); } } } let terminator = data.terminator(); let span = terminator.source_info.span; bb = match terminator.kind { mir::TerminatorKind::Drop { target, .. } | // No dropping. mir::TerminatorKind::Goto { target } => target, mir::TerminatorKind::Return => { failure?; return Ok(self.locals[mir::RETURN_POINTER].unwrap_or_else(|| { span_bug!(span, "no returned value in constant"); })); } mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, .. } => { let cond = self.const_operand(cond, span)?; let cond_bool = common::const_to_uint(cond.llval) != 0; if cond_bool != expected { let err = match *msg { mir::AssertMessage::BoundsCheck { ref len, ref index } => { let len = self.const_operand(len, span)?; let index = self.const_operand(index, span)?; ErrKind::IndexOutOfBounds { len: common::const_to_uint(len.llval), index: common::const_to_uint(index.llval) } } mir::AssertMessage::Math(ref err) => { ErrKind::Math(err.clone()) } }; let err = ConstEvalErr { span: span, kind: err }; err.report(tcx, span, "expression"); failure = Err(err); } target } mir::TerminatorKind::Call { ref func, ref args, ref destination, .. } => { let fn_ty = func.ty(self.mir, tcx); let fn_ty = self.monomorphize(&fn_ty); let (def_id, substs) = match fn_ty.sty { ty::TyFnDef(def_id, substs, _) => (def_id, substs), _ => span_bug!(span, "calling {:?} (of type {}) in constant", func, fn_ty) }; let mut const_args = IndexVec::with_capacity(args.len()); for arg in args { match self.const_operand(arg, span) { Ok(arg) => { const_args.push(arg); }, Err(err) => if failure.is_ok() { failure = Err(err); } } } if let Some((ref dest, target)) = *destination { match MirConstContext::trans_def(self.ccx, def_id, substs, const_args) { Ok(value) => self.store(dest, value, span), Err(err) => if failure.is_ok() { failure = Err(err); } } target } else { span_bug!(span, "diverging {:?} in constant", terminator.kind); } } _ => span_bug!(span, "{:?} in constant", terminator.kind) }; } } fn store(&mut self, dest: &mir::Lvalue<'tcx>, value: Const<'tcx>, span: Span) { if let mir::Lvalue::Local(index) = *dest { self.locals[index] = Some(value); } else { span_bug!(span, "assignment to {:?} in constant", dest); } } fn const_lvalue(&self, lvalue: &mir::Lvalue<'tcx>, span: Span) -> Result, ConstEvalErr<'tcx>> { let tcx = self.ccx.tcx(); if let mir::Lvalue::Local(index) = *lvalue { return Ok(self.locals[index].unwrap_or_else(|| { span_bug!(span, "{:?} not initialized", lvalue) }).as_lvalue()); } let lvalue = match *lvalue { mir::Lvalue::Local(_) => bug!(), // handled above mir::Lvalue::Static(box mir::Static { def_id, ty }) => { ConstLvalue { base: Base::Static(consts::get_static(self.ccx, def_id)), llextra: ptr::null_mut(), ty: self.monomorphize(&ty), } } mir::Lvalue::Projection(ref projection) => { let tr_base = self.const_lvalue(&projection.base, span)?; let projected_ty = LvalueTy::Ty { ty: tr_base.ty } .projection_ty(tcx, &projection.elem); let base = tr_base.to_const(span); let projected_ty = self.monomorphize(&projected_ty).to_ty(tcx); let is_sized = self.ccx.shared().type_is_sized(projected_ty); let (projected, llextra) = match projection.elem { mir::ProjectionElem::Deref => { let (base, extra) = if is_sized { (base.llval, ptr::null_mut()) } else { base.get_fat_ptr() }; if self.ccx.statics().borrow().contains_key(&base) { (Base::Static(base), extra) } else if let ty::TyStr = projected_ty.sty { (Base::Str(base), extra) } else { let v = base; let v = self.ccx.const_unsized().borrow().get(&v).map_or(v, |&v| v); let mut val = unsafe { llvm::LLVMGetInitializer(v) }; if val.is_null() { span_bug!(span, "dereference of non-constant pointer `{:?}`", Value(base)); } if projected_ty.is_bool() { let i1_type = Type::i1(self.ccx); if val_ty(val) != i1_type { unsafe { val = llvm::LLVMConstTrunc(val, i1_type.to_ref()); } } } (Base::Value(val), extra) } } mir::ProjectionElem::Field(ref field, _) => { let llprojected = adt::const_get_field(self.ccx, tr_base.ty, base.llval, field.index()); let llextra = if is_sized { ptr::null_mut() } else { tr_base.llextra }; (Base::Value(llprojected), llextra) } mir::ProjectionElem::Index(ref index) => { let llindex = self.const_operand(index, span)?.llval; let iv = if let Some(iv) = common::const_to_opt_u128(llindex, false) { iv } else { span_bug!(span, "index is not an integer-constant expression") }; // Produce an undef instead of a LLVM assertion on OOB. let len = common::const_to_uint(tr_base.len(self.ccx)); let llelem = if iv < len as u128 { const_get_elt(base.llval, &[iv as u32]) } else { C_undef(type_of::type_of(self.ccx, projected_ty)) }; (Base::Value(llelem), ptr::null_mut()) } _ => span_bug!(span, "{:?} in constant", projection.elem) }; ConstLvalue { base: projected, llextra: llextra, ty: projected_ty } } }; Ok(lvalue) } fn const_operand(&self, operand: &mir::Operand<'tcx>, span: Span) -> Result, ConstEvalErr<'tcx>> { debug!("const_operand({:?} @ {:?})", operand, span); let result = match *operand { mir::Operand::Consume(ref lvalue) => { Ok(self.const_lvalue(lvalue, span)?.to_const(span)) } mir::Operand::Constant(ref constant) => { let ty = self.monomorphize(&constant.ty); match constant.literal.clone() { mir::Literal::Item { def_id, substs } => { let substs = self.monomorphize(&substs); MirConstContext::trans_def(self.ccx, def_id, substs, IndexVec::new()) } mir::Literal::Promoted { index } => { let mir = &self.mir.promoted[index]; MirConstContext::new(self.ccx, mir, self.substs, IndexVec::new()).trans() } mir::Literal::Value { value } => { Ok(Const::from_constval(self.ccx, value, ty)) } } } }; debug!("const_operand({:?} @ {:?}) = {:?}", operand, span, result.as_ref().ok()); result } fn const_array(&self, array_ty: Ty<'tcx>, fields: &[ValueRef]) -> Const<'tcx> { let elem_ty = array_ty.builtin_index().unwrap_or_else(|| { bug!("bad array type {:?}", array_ty) }); let llunitty = type_of::type_of(self.ccx, elem_ty); // If the array contains enums, an LLVM array won't work. let val = if fields.iter().all(|&f| val_ty(f) == llunitty) { C_array(llunitty, fields) } else { C_struct(self.ccx, fields, false) }; Const::new(val, array_ty) } fn const_rvalue(&self, rvalue: &mir::Rvalue<'tcx>, dest_ty: Ty<'tcx>, span: Span) -> Result, ConstEvalErr<'tcx>> { let tcx = self.ccx.tcx(); debug!("const_rvalue({:?}: {:?} @ {:?})", rvalue, dest_ty, span); let val = match *rvalue { mir::Rvalue::Use(ref operand) => self.const_operand(operand, span)?, mir::Rvalue::Repeat(ref elem, ref count) => { let elem = self.const_operand(elem, span)?; let size = count.as_u64(tcx.sess.target.uint_type); let fields = vec![elem.llval; size as usize]; self.const_array(dest_ty, &fields) } mir::Rvalue::Aggregate(ref kind, ref operands) => { // Make sure to evaluate all operands to // report as many errors as we possibly can. let mut fields = Vec::with_capacity(operands.len()); let mut failure = Ok(()); for operand in operands { match self.const_operand(operand, span) { Ok(val) => fields.push(val.llval), Err(err) => if failure.is_ok() { failure = Err(err); } } } failure?; match **kind { mir::AggregateKind::Array(_) => { self.const_array(dest_ty, &fields) } mir::AggregateKind::Adt(..) | mir::AggregateKind::Closure(..) | mir::AggregateKind::Tuple => { Const::new(trans_const(self.ccx, dest_ty, kind, &fields), dest_ty) } } } mir::Rvalue::Cast(ref kind, ref source, cast_ty) => { let operand = self.const_operand(source, span)?; let cast_ty = self.monomorphize(&cast_ty); let val = match *kind { mir::CastKind::ReifyFnPointer => { match operand.ty.sty { ty::TyFnDef(def_id, substs, _) => { callee::resolve_and_get_fn(self.ccx, def_id, substs) } _ => { span_bug!(span, "{} cannot be reified to a fn ptr", operand.ty) } } } mir::CastKind::ClosureFnPointer => { match operand.ty.sty { ty::TyClosure(def_id, substs) => { // Get the def_id for FnOnce::call_once let fn_once = tcx.lang_items.fn_once_trait().unwrap(); let call_once = tcx .global_tcx().associated_items(fn_once) .find(|it| it.kind == ty::AssociatedKind::Method) .unwrap().def_id; // Now create its substs [Closure, Tuple] let input = tcx.closure_type(def_id) .subst(tcx, substs.substs).input(0); let input = tcx.erase_late_bound_regions_and_normalize(&input); let substs = tcx.mk_substs([operand.ty, input] .iter().cloned().map(Kind::from)); callee::resolve_and_get_fn(self.ccx, call_once, substs) } _ => { bug!("{} cannot be cast to a fn ptr", operand.ty) } } } mir::CastKind::UnsafeFnPointer => { // this is a no-op at the LLVM level operand.llval } mir::CastKind::Unsize => { // unsize targets other than to a fat pointer currently // can't be in constants. assert!(common::type_is_fat_ptr(self.ccx, cast_ty)); let pointee_ty = operand.ty.builtin_deref(true, ty::NoPreference) .expect("consts: unsizing got non-pointer type").ty; let (base, old_info) = if !self.ccx.shared().type_is_sized(pointee_ty) { // Normally, the source is a thin pointer and we are // adding extra info to make a fat pointer. The exception // is when we are upcasting an existing object fat pointer // to use a different vtable. In that case, we want to // load out the original data pointer so we can repackage // it. let (base, extra) = operand.get_fat_ptr(); (base, Some(extra)) } else { (operand.llval, None) }; let unsized_ty = cast_ty.builtin_deref(true, ty::NoPreference) .expect("consts: unsizing got non-pointer target type").ty; let ptr_ty = type_of::in_memory_type_of(self.ccx, unsized_ty).ptr_to(); let base = consts::ptrcast(base, ptr_ty); let info = base::unsized_info(self.ccx, pointee_ty, unsized_ty, old_info); if old_info.is_none() { let prev_const = self.ccx.const_unsized().borrow_mut() .insert(base, operand.llval); assert!(prev_const.is_none() || prev_const == Some(operand.llval)); } assert_eq!(abi::FAT_PTR_ADDR, 0); assert_eq!(abi::FAT_PTR_EXTRA, 1); C_struct(self.ccx, &[base, info], false) } mir::CastKind::Misc if common::type_is_immediate(self.ccx, operand.ty) => { debug_assert!(common::type_is_immediate(self.ccx, cast_ty)); let r_t_in = CastTy::from_ty(operand.ty).expect("bad input type for cast"); let r_t_out = CastTy::from_ty(cast_ty).expect("bad output type for cast"); let ll_t_out = type_of::immediate_type_of(self.ccx, cast_ty); let llval = operand.llval; let signed = if let CastTy::Int(IntTy::CEnum) = r_t_in { let l = self.ccx.layout_of(operand.ty); adt::is_discr_signed(&l) } else { operand.ty.is_signed() }; unsafe { match (r_t_in, r_t_out) { (CastTy::Int(_), CastTy::Int(_)) => { let s = signed as llvm::Bool; llvm::LLVMConstIntCast(llval, ll_t_out.to_ref(), s) } (CastTy::Int(_), CastTy::Float) => { if signed { llvm::LLVMConstSIToFP(llval, ll_t_out.to_ref()) } else { llvm::LLVMConstUIToFP(llval, ll_t_out.to_ref()) } } (CastTy::Float, CastTy::Float) => { llvm::LLVMConstFPCast(llval, ll_t_out.to_ref()) } (CastTy::Float, CastTy::Int(IntTy::I)) => { llvm::LLVMConstFPToSI(llval, ll_t_out.to_ref()) } (CastTy::Float, CastTy::Int(_)) => { llvm::LLVMConstFPToUI(llval, ll_t_out.to_ref()) } (CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_)) | (CastTy::RPtr(_), CastTy::Ptr(_)) => { consts::ptrcast(llval, ll_t_out) } (CastTy::Int(_), CastTy::Ptr(_)) => { llvm::LLVMConstIntToPtr(llval, ll_t_out.to_ref()) } (CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => { llvm::LLVMConstPtrToInt(llval, ll_t_out.to_ref()) } _ => bug!("unsupported cast: {:?} to {:?}", operand.ty, cast_ty) } } } mir::CastKind::Misc => { // Casts from a fat-ptr. let ll_cast_ty = type_of::immediate_type_of(self.ccx, cast_ty); let ll_from_ty = type_of::immediate_type_of(self.ccx, operand.ty); if common::type_is_fat_ptr(self.ccx, operand.ty) { let (data_ptr, meta_ptr) = operand.get_fat_ptr(); if common::type_is_fat_ptr(self.ccx, cast_ty) { let ll_cft = ll_cast_ty.field_types(); let ll_fft = ll_from_ty.field_types(); let data_cast = consts::ptrcast(data_ptr, ll_cft[0]); assert_eq!(ll_cft[1].kind(), ll_fft[1].kind()); C_struct(self.ccx, &[data_cast, meta_ptr], false) } else { // cast to thin-ptr // Cast of fat-ptr to thin-ptr is an extraction of data-ptr and // pointer-cast of that pointer to desired pointer type. consts::ptrcast(data_ptr, ll_cast_ty) } } else { bug!("Unexpected non-fat-pointer operand") } } }; Const::new(val, cast_ty) } mir::Rvalue::Ref(_, bk, ref lvalue) => { let tr_lvalue = self.const_lvalue(lvalue, span)?; let ty = tr_lvalue.ty; let ref_ty = tcx.mk_ref(tcx.types.re_erased, ty::TypeAndMut { ty: ty, mutbl: bk.to_mutbl_lossy() }); let base = match tr_lvalue.base { Base::Value(llval) => { // FIXME: may be wrong for &*(&simd_vec as &fmt::Debug) let align = if self.ccx.shared().type_is_sized(ty) { self.ccx.align_of(ty) } else { self.ccx.tcx().data_layout.pointer_align.abi() as machine::llalign }; if bk == mir::BorrowKind::Mut { consts::addr_of_mut(self.ccx, llval, align, "ref_mut") } else { consts::addr_of(self.ccx, llval, align, "ref") } } Base::Str(llval) | Base::Static(llval) => llval }; let ptr = if self.ccx.shared().type_is_sized(ty) { base } else { C_struct(self.ccx, &[base, tr_lvalue.llextra], false) }; Const::new(ptr, ref_ty) } mir::Rvalue::Len(ref lvalue) => { let tr_lvalue = self.const_lvalue(lvalue, span)?; Const::new(tr_lvalue.len(self.ccx), tcx.types.usize) } mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => { let lhs = self.const_operand(lhs, span)?; let rhs = self.const_operand(rhs, span)?; let ty = lhs.ty; let binop_ty = op.ty(tcx, lhs.ty, rhs.ty); let (lhs, rhs) = (lhs.llval, rhs.llval); Const::new(const_scalar_binop(op, lhs, rhs, ty), binop_ty) } mir::Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => { let lhs = self.const_operand(lhs, span)?; let rhs = self.const_operand(rhs, span)?; let ty = lhs.ty; let val_ty = op.ty(tcx, lhs.ty, rhs.ty); let binop_ty = tcx.intern_tup(&[val_ty, tcx.types.bool], false); let (lhs, rhs) = (lhs.llval, rhs.llval); assert!(!ty.is_fp()); match const_scalar_checked_binop(tcx, op, lhs, rhs, ty) { Some((llval, of)) => { let llof = C_bool(self.ccx, of); Const::new(C_struct(self.ccx, &[llval, llof], false), binop_ty) } None => { span_bug!(span, "{:?} got non-integer operands: {:?} and {:?}", rvalue, Value(lhs), Value(rhs)); } } } mir::Rvalue::UnaryOp(op, ref operand) => { let operand = self.const_operand(operand, span)?; let lloperand = operand.llval; let llval = match op { mir::UnOp::Not => { unsafe { llvm::LLVMConstNot(lloperand) } } mir::UnOp::Neg => { let is_float = operand.ty.is_fp(); unsafe { if is_float { llvm::LLVMConstFNeg(lloperand) } else { llvm::LLVMConstNeg(lloperand) } } } }; Const::new(llval, operand.ty) } mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => { assert!(self.ccx.shared().type_is_sized(ty)); let llval = C_uint(self.ccx, self.ccx.size_of(ty)); Const::new(llval, tcx.types.usize) } _ => span_bug!(span, "{:?} in constant", rvalue) }; debug!("const_rvalue({:?}: {:?} @ {:?}) = {:?}", rvalue, dest_ty, span, val); Ok(val) } } fn to_const_int(value: ValueRef, t: Ty, tcx: TyCtxt) -> Option { match t.sty { ty::TyInt(int_type) => const_to_opt_u128(value, true) .and_then(|input| ConstInt::new_signed(input as i128, int_type, tcx.sess.target.int_type)), ty::TyUint(uint_type) => const_to_opt_u128(value, false) .and_then(|input| ConstInt::new_unsigned(input, uint_type, tcx.sess.target.uint_type)), _ => None } } pub fn const_scalar_binop(op: mir::BinOp, lhs: ValueRef, rhs: ValueRef, input_ty: Ty) -> ValueRef { assert!(!input_ty.is_simd()); let is_float = input_ty.is_fp(); let signed = input_ty.is_signed(); unsafe { match op { mir::BinOp::Add if is_float => llvm::LLVMConstFAdd(lhs, rhs), mir::BinOp::Add => llvm::LLVMConstAdd(lhs, rhs), mir::BinOp::Sub if is_float => llvm::LLVMConstFSub(lhs, rhs), mir::BinOp::Sub => llvm::LLVMConstSub(lhs, rhs), mir::BinOp::Mul if is_float => llvm::LLVMConstFMul(lhs, rhs), mir::BinOp::Mul => llvm::LLVMConstMul(lhs, rhs), mir::BinOp::Div if is_float => llvm::LLVMConstFDiv(lhs, rhs), mir::BinOp::Div if signed => llvm::LLVMConstSDiv(lhs, rhs), mir::BinOp::Div => llvm::LLVMConstUDiv(lhs, rhs), mir::BinOp::Rem if is_float => llvm::LLVMConstFRem(lhs, rhs), mir::BinOp::Rem if signed => llvm::LLVMConstSRem(lhs, rhs), mir::BinOp::Rem => llvm::LLVMConstURem(lhs, rhs), mir::BinOp::BitXor => llvm::LLVMConstXor(lhs, rhs), mir::BinOp::BitAnd => llvm::LLVMConstAnd(lhs, rhs), mir::BinOp::BitOr => llvm::LLVMConstOr(lhs, rhs), mir::BinOp::Shl => { let rhs = base::cast_shift_const_rhs(op.to_hir_binop(), lhs, rhs); llvm::LLVMConstShl(lhs, rhs) } mir::BinOp::Shr => { let rhs = base::cast_shift_const_rhs(op.to_hir_binop(), lhs, rhs); if signed { llvm::LLVMConstAShr(lhs, rhs) } else { llvm::LLVMConstLShr(lhs, rhs) } } mir::BinOp::Eq | mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Le | mir::BinOp::Gt | mir::BinOp::Ge => { if is_float { let cmp = base::bin_op_to_fcmp_predicate(op.to_hir_binop()); llvm::LLVMConstFCmp(cmp, lhs, rhs) } else { let cmp = base::bin_op_to_icmp_predicate(op.to_hir_binop(), signed); llvm::LLVMConstICmp(cmp, lhs, rhs) } } mir::BinOp::Offset => unreachable!("BinOp::Offset in const-eval!") } } } pub fn const_scalar_checked_binop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, op: mir::BinOp, lllhs: ValueRef, llrhs: ValueRef, input_ty: Ty<'tcx>) -> Option<(ValueRef, bool)> { if let (Some(lhs), Some(rhs)) = (to_const_int(lllhs, input_ty, tcx), to_const_int(llrhs, input_ty, tcx)) { let result = match op { mir::BinOp::Add => lhs + rhs, mir::BinOp::Sub => lhs - rhs, mir::BinOp::Mul => lhs * rhs, mir::BinOp::Shl => lhs << rhs, mir::BinOp::Shr => lhs >> rhs, _ => { bug!("Operator `{:?}` is not a checkable operator", op) } }; let of = match result { Ok(_) => false, Err(ConstMathErr::Overflow(_)) | Err(ConstMathErr::ShiftNegative) => true, Err(err) => { bug!("Operator `{:?}` on `{:?}` and `{:?}` errored: {}", op, lhs, rhs, err.description()); } }; Some((const_scalar_binop(op, lllhs, llrhs, input_ty), of)) } else { None } } impl<'a, 'tcx> MirContext<'a, 'tcx> { pub fn trans_constant(&mut self, bcx: &Builder<'a, 'tcx>, constant: &mir::Constant<'tcx>) -> Const<'tcx> { debug!("trans_constant({:?})", constant); let ty = self.monomorphize(&constant.ty); let result = match constant.literal.clone() { mir::Literal::Item { def_id, substs } => { let substs = self.monomorphize(&substs); MirConstContext::trans_def(bcx.ccx, def_id, substs, IndexVec::new()) } mir::Literal::Promoted { index } => { let mir = &self.mir.promoted[index]; MirConstContext::new(bcx.ccx, mir, self.param_substs, IndexVec::new()).trans() } mir::Literal::Value { value } => { Ok(Const::from_constval(bcx.ccx, value, ty)) } }; let result = result.unwrap_or_else(|_| { // We've errored, so we don't have to produce working code. let llty = type_of::type_of(bcx.ccx, ty); Const::new(C_undef(llty), ty) }); debug!("trans_constant({:?}) = {:?}", constant, result); result } } pub fn trans_static_initializer<'a, 'tcx>( ccx: &CrateContext<'a, 'tcx>, def_id: DefId) -> Result> { MirConstContext::trans_def(ccx, def_id, Substs::empty(), IndexVec::new()) .map(|c| c.llval) } /// Construct a constant value, suitable for initializing a /// GlobalVariable, given a case and constant values for its fields. /// Note that this may have a different LLVM type (and different /// alignment!) from the representation's `type_of`, so it needs a /// pointer cast before use. /// /// The LLVM type system does not directly support unions, and only /// pointers can be bitcast, so a constant (and, by extension, the /// GlobalVariable initialized by it) will have a type that can vary /// depending on which case of an enum it is. /// /// To understand the alignment situation, consider `enum E { V64(u64), /// V32(u32, u32) }` on Windows. The type has 8-byte alignment to /// accommodate the u64, but `V32(x, y)` would have LLVM type `{i32, /// i32, i32}`, which is 4-byte aligned. /// /// Currently the returned value has the same size as the type, but /// this could be changed in the future to avoid allocating unnecessary /// space after values of shorter-than-maximum cases. fn trans_const<'a, 'tcx>( ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>, kind: &mir::AggregateKind, vals: &[ValueRef] ) -> ValueRef { let l = ccx.layout_of(t); let variant_index = match *kind { mir::AggregateKind::Adt(_, index, _, _) => index, _ => 0, }; match *l { layout::CEnum { discr: d, min, max, .. } => { let discr = match *kind { mir::AggregateKind::Adt(adt_def, _, _, _) => { adt_def.discriminant_for_variant(ccx.tcx(), variant_index) .to_u128_unchecked() as u64 }, _ => 0, }; assert_eq!(vals.len(), 0); adt::assert_discr_in_range(min, max, discr); C_integral(Type::from_integer(ccx, d), discr, true) } layout::General { discr: d, ref variants, .. } => { let variant = &variants[variant_index]; let lldiscr = C_integral(Type::from_integer(ccx, d), variant_index as u64, true); let mut vals_with_discr = vec![lldiscr]; vals_with_discr.extend_from_slice(vals); let mut contents = build_const_struct(ccx, &variant, &vals_with_discr[..]); let needed_padding = l.size(ccx).bytes() - variant.stride().bytes(); if needed_padding > 0 { contents.push(padding(ccx, needed_padding)); } C_struct(ccx, &contents[..], false) } layout::UntaggedUnion { ref variants, .. }=> { assert_eq!(variant_index, 0); let contents = build_const_union(ccx, variants, vals[0]); C_struct(ccx, &contents, variants.packed) } layout::Univariant { ref variant, .. } => { assert_eq!(variant_index, 0); let contents = build_const_struct(ccx, &variant, vals); C_struct(ccx, &contents[..], variant.packed) } layout::Vector { .. } => { C_vector(vals) } layout::RawNullablePointer { nndiscr, .. } => { if variant_index as u64 == nndiscr { assert_eq!(vals.len(), 1); vals[0] } else { C_null(type_of::type_of(ccx, t)) } } layout::StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => { if variant_index as u64 == nndiscr { C_struct(ccx, &build_const_struct(ccx, &nonnull, vals), false) } else { // Always use null even if it's not the `discrfield`th // field; see #8506. C_null(type_of::type_of(ccx, t)) } } _ => bug!("trans_const: cannot handle type {} repreented as {:#?}", t, l) } } /// Building structs is a little complicated, because we might need to /// insert padding if a field's value is less aligned than its type. /// /// Continuing the example from `trans_const`, a value of type `(u32, /// E)` should have the `E` at offset 8, but if that field's /// initializer is 4-byte aligned then simply translating the tuple as /// a two-element struct will locate it at offset 4, and accesses to it /// will read the wrong memory. fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, st: &layout::Struct, vals: &[ValueRef]) -> Vec { assert_eq!(vals.len(), st.offsets.len()); if vals.len() == 0 { return Vec::new(); } // offset of current value let mut offset = 0; let mut cfields = Vec::new(); cfields.reserve(st.offsets.len()*2); let parts = st.field_index_by_increasing_offset().map(|i| { (&vals[i], st.offsets[i].bytes()) }); for (&val, target_offset) in parts { if offset < target_offset { cfields.push(padding(ccx, target_offset - offset)); offset = target_offset; } assert!(!is_undef(val)); cfields.push(val); offset += machine::llsize_of_alloc(ccx, val_ty(val)); } if offset < st.stride().bytes() { cfields.push(padding(ccx, st.stride().bytes() - offset)); } cfields } fn build_const_union<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, un: &layout::Union, field_val: ValueRef) -> Vec { let mut cfields = vec![field_val]; let offset = machine::llsize_of_alloc(ccx, val_ty(field_val)); let size = un.stride().bytes(); if offset != size { cfields.push(padding(ccx, size - offset)); } cfields } fn padding(ccx: &CrateContext, size: u64) -> ValueRef { C_undef(Type::array(&Type::i8(ccx), size)) }