// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This pass is only used for the UNIT TESTS and DEBUGGING NEEDS //! around dependency graph construction. It serves two purposes; it //! will dump graphs in graphviz form to disk, and it searches for //! `#[rustc_if_this_changed]` and `#[rustc_then_this_would_need]` //! annotations. These annotations can be used to test whether paths //! exist in the graph. We report errors on each //! `rustc_if_this_changed` annotation. If a path exists in all //! cases, then we would report "all path(s) exist". Otherwise, we //! report: "no path to `foo`" for each case where no path exists. //! `compile-fail` tests can then be used to check when paths exist or //! do not. //! //! The full form of the `rustc_if_this_changed` annotation is //! `#[rustc_if_this_changed(id)]`. The `"id"` is optional and //! defaults to `"id"` if omitted. //! //! Example: //! //! ``` //! #[rustc_if_this_changed] //! fn foo() { } //! //! #[rustc_then_this_would_need("trans")] //~ ERROR no path from `foo` //! fn bar() { } //! //! #[rustc_then_this_would_need("trans")] //~ ERROR OK //! fn baz() { foo(); } //! ``` use graphviz as dot; use rustc::dep_graph::{DepGraphQuery, DepNode}; use rustc::middle::def_id::DefId; use rustc::ty::TyCtxt; use rustc_data_structures::fnv::{FnvHashMap, FnvHashSet}; use rustc_data_structures::graph::{Direction, INCOMING, OUTGOING, NodeIndex}; use rustc::hir; use rustc::hir::intravisit::Visitor; use graphviz::IntoCow; use std::env; use std::fs::File; use std::io::Write; use syntax::ast; use syntax::attr::AttrMetaMethods; use syntax::codemap::Span; use syntax::parse::token::InternedString; const IF_THIS_CHANGED: &'static str = "rustc_if_this_changed"; const THEN_THIS_WOULD_NEED: &'static str = "rustc_then_this_would_need"; const ID: &'static str = "id"; pub fn assert_dep_graph(tcx: &TyCtxt) { let _ignore = tcx.dep_graph.in_ignore(); if tcx.sess.opts.dump_dep_graph { dump_graph(tcx); } // Find annotations supplied by user (if any). let (if_this_changed, then_this_would_need) = { let mut visitor = IfThisChanged { tcx: tcx, if_this_changed: FnvHashMap(), then_this_would_need: FnvHashMap() }; tcx.map.krate().visit_all_items(&mut visitor); (visitor.if_this_changed, visitor.then_this_would_need) }; // Check paths. check_paths(tcx, &if_this_changed, &then_this_would_need); } type SourceHashMap = FnvHashMap>; type TargetHashMap = FnvHashMap>; struct IfThisChanged<'a, 'tcx:'a> { tcx: &'a TyCtxt<'tcx>, if_this_changed: SourceHashMap, then_this_would_need: TargetHashMap, } impl<'a, 'tcx> IfThisChanged<'a, 'tcx> { fn process_attrs(&mut self, node_id: ast::NodeId, def_id: DefId) { for attr in self.tcx.get_attrs(def_id).iter() { if attr.check_name(IF_THIS_CHANGED) { let mut id = None; for meta_item in attr.meta_item_list().unwrap_or_default() { match meta_item.node { ast::MetaItemKind::Word(ref s) if id.is_none() => id = Some(s.clone()), _ => { self.tcx.sess.span_err( meta_item.span, &format!("unexpected meta-item {:?}", meta_item.node)); } } } let id = id.unwrap_or(InternedString::new(ID)); self.if_this_changed.entry(id) .or_insert(FnvHashSet()) .insert((attr.span, def_id, DepNode::Hir(def_id))); } else if attr.check_name(THEN_THIS_WOULD_NEED) { let mut dep_node_interned = None; let mut id = None; for meta_item in attr.meta_item_list().unwrap_or_default() { match meta_item.node { ast::MetaItemKind::Word(ref s) if dep_node_interned.is_none() => dep_node_interned = Some(s.clone()), ast::MetaItemKind::Word(ref s) if id.is_none() => id = Some(s.clone()), _ => { self.tcx.sess.span_err( meta_item.span, &format!("unexpected meta-item {:?}", meta_item.node)); } } } let dep_node_str = dep_node_interned.as_ref().map(|s| &**s); macro_rules! match_depnode_name { ($input:expr, $def_id:expr, match { $($variant:ident,)* } else $y:expr) => { match $input { $(Some(stringify!($variant)) => DepNode::$variant($def_id),)* _ => $y } } } let dep_node = match_depnode_name! { dep_node_str, def_id, match { CollectItem, BorrowCheck, TransCrateItem, TypeckItemType, TypeckItemBody, ImplOrTraitItems, ItemSignature, FieldTy, TraitItemDefIds, InherentImpls, ImplItems, TraitImpls, ReprHints, } else { self.tcx.sess.span_fatal( attr.span, &format!("unrecognized DepNode variant {:?}", dep_node_str)); } }; let id = id.unwrap_or(InternedString::new(ID)); self.then_this_would_need .entry(id) .or_insert(FnvHashSet()) .insert((attr.span, dep_node_interned.clone().unwrap(), node_id, dep_node)); } } } } impl<'a, 'tcx> Visitor<'tcx> for IfThisChanged<'a, 'tcx> { fn visit_item(&mut self, item: &'tcx hir::Item) { let def_id = self.tcx.map.local_def_id(item.id); self.process_attrs(item.id, def_id); } } fn check_paths(tcx: &TyCtxt, if_this_changed: &SourceHashMap, then_this_would_need: &TargetHashMap) { // Return early here so as not to construct the query, which is not cheap. if if_this_changed.is_empty() { return; } let query = tcx.dep_graph.query(); for (id, sources) in if_this_changed { let targets = match then_this_would_need.get(id) { Some(targets) => targets, None => { for &(source_span, _, _) in sources.iter().take(1) { tcx.sess.span_err( source_span, &format!("no targets for id `{}`", id)); } continue; } }; for &(_, source_def_id, source_dep_node) in sources { let dependents = query.dependents(source_dep_node); for &(target_span, ref target_pass, _, ref target_dep_node) in targets { if !dependents.contains(&target_dep_node) { tcx.sess.span_err( target_span, &format!("no path from `{}` to `{}`", tcx.item_path_str(source_def_id), target_pass)); } else { tcx.sess.span_err( target_span, &format!("OK")); } } } } } fn dump_graph(tcx: &TyCtxt) { let path: String = env::var("RUST_DEP_GRAPH").unwrap_or_else(|_| format!("dep_graph")); let query = tcx.dep_graph.query(); let nodes = match env::var("RUST_DEP_GRAPH_FILTER") { Ok(string) => { // Expect one of: "-> target", "source -> target", or "source ->". let parts: Vec<_> = string.split("->").collect(); if parts.len() > 2 { bug!("Invalid RUST_DEP_GRAPH_FILTER: expected '[source] -> [target]'"); } let sources = node_set(&query, &parts[0]); let targets = node_set(&query, &parts[1]); filter_nodes(&query, &sources, &targets) } Err(_) => { query.nodes() .into_iter() .collect() } }; let edges = filter_edges(&query, &nodes); { // dump a .txt file with just the edges: let txt_path = format!("{}.txt", path); let mut file = File::create(&txt_path).unwrap(); for &(source, target) in &edges { write!(file, "{:?} -> {:?}\n", source, target).unwrap(); } } { // dump a .dot file in graphviz format: let dot_path = format!("{}.dot", path); let mut v = Vec::new(); dot::render(&GraphvizDepGraph(nodes, edges), &mut v).unwrap(); File::create(&dot_path).and_then(|mut f| f.write_all(&v)).unwrap(); } } pub struct GraphvizDepGraph(FnvHashSet, Vec<(DepNode, DepNode)>); impl<'a, 'tcx> dot::GraphWalk<'a> for GraphvizDepGraph { type Node = DepNode; type Edge = (DepNode, DepNode); fn nodes(&self) -> dot::Nodes { let nodes: Vec<_> = self.0.iter().cloned().collect(); nodes.into_cow() } fn edges(&self) -> dot::Edges<(DepNode, DepNode)> { self.1[..].into_cow() } fn source(&self, edge: &(DepNode, DepNode)) -> DepNode { edge.0 } fn target(&self, edge: &(DepNode, DepNode)) -> DepNode { edge.1 } } impl<'a, 'tcx> dot::Labeller<'a> for GraphvizDepGraph { type Node = DepNode; type Edge = (DepNode, DepNode); fn graph_id(&self) -> dot::Id { dot::Id::new("DependencyGraph").unwrap() } fn node_id(&self, n: &DepNode) -> dot::Id { let s: String = format!("{:?}", n).chars() .map(|c| if c == '_' || c.is_alphanumeric() { c } else { '_' }) .collect(); debug!("n={:?} s={:?}", n, s); dot::Id::new(s).unwrap() } fn node_label(&self, n: &DepNode) -> dot::LabelText { dot::LabelText::label(format!("{:?}", n)) } } // Given an optional filter like `"x,y,z"`, returns either `None` (no // filter) or the set of nodes whose labels contain all of those // substrings. fn node_set(query: &DepGraphQuery, filter: &str) -> Option> { debug!("node_set(filter={:?})", filter); if filter.trim().is_empty() { return None; } let filters: Vec<&str> = filter.split("&").map(|s| s.trim()).collect(); debug!("node_set: filters={:?}", filters); Some(query.nodes() .into_iter() .filter(|n| { let s = format!("{:?}", n); filters.iter().all(|f| s.contains(f)) }) .collect()) } fn filter_nodes(query: &DepGraphQuery, sources: &Option>, targets: &Option>) -> FnvHashSet { if let &Some(ref sources) = sources { if let &Some(ref targets) = targets { walk_between(query, sources, targets) } else { walk_nodes(query, sources, OUTGOING) } } else if let &Some(ref targets) = targets { walk_nodes(query, targets, INCOMING) } else { query.nodes().into_iter().collect() } } fn walk_nodes(query: &DepGraphQuery, starts: &FnvHashSet, direction: Direction) -> FnvHashSet { let mut set = FnvHashSet(); for start in starts { debug!("walk_nodes: start={:?} outgoing?={:?}", start, direction == OUTGOING); if set.insert(*start) { let mut stack = vec![query.indices[start]]; while let Some(index) = stack.pop() { for (_, edge) in query.graph.adjacent_edges(index, direction) { let neighbor_index = edge.source_or_target(direction); let neighbor = query.graph.node_data(neighbor_index); if set.insert(*neighbor) { stack.push(neighbor_index); } } } } } set } fn walk_between(query: &DepGraphQuery, sources: &FnvHashSet, targets: &FnvHashSet) -> FnvHashSet { // This is a bit tricky. We want to include a node only if it is: // (a) reachable from a source and (b) will reach a target. And we // have to be careful about cycles etc. Luckily efficiency is not // a big concern! #[derive(Copy, Clone, PartialEq)] enum State { Undecided, Deciding, Included, Excluded } let mut node_states = vec![State::Undecided; query.graph.len_nodes()]; for &target in targets { node_states[query.indices[&target].0] = State::Included; } for source in sources.iter().map(|n| query.indices[n]) { recurse(query, &mut node_states, source); } return query.nodes() .into_iter() .filter(|n| { let index = query.indices[n]; node_states[index.0] == State::Included }) .collect(); fn recurse(query: &DepGraphQuery, node_states: &mut [State], node: NodeIndex) -> bool { match node_states[node.0] { // known to reach a target State::Included => return true, // known not to reach a target State::Excluded => return false, // backedge, not yet known, say false State::Deciding => return false, State::Undecided => { } } node_states[node.0] = State::Deciding; for neighbor_index in query.graph.successor_nodes(node) { if recurse(query, node_states, neighbor_index) { node_states[node.0] = State::Included; } } // if we didn't find a path to target, then set to excluded if node_states[node.0] == State::Deciding { node_states[node.0] = State::Excluded; false } else { assert!(node_states[node.0] == State::Included); true } } } fn filter_edges(query: &DepGraphQuery, nodes: &FnvHashSet) -> Vec<(DepNode, DepNode)> { query.edges() .into_iter() .filter(|&(source, target)| nodes.contains(&source) && nodes.contains(&target)) .collect() }